Ко входуЯков Кротов. Богочеловвеческая историяПомощь
 

Стивен Вайнберг

МЕЧТЫ ОБ ОКОНЧАТЕЛЬНОЙ ТЕОРИИ

К оглавлению

Глава I. Пролог

 

Красавицы на моем пути,

Желанные и покорившиеся мне,

Они – мечты  всего лишь о тебе…

Джон Донн

В ХХ в. необычайно расширились границы научного познания в физике. Наши представления о пространстве, времени и тяготении полностью изменились благодаря специальной и общей теориям относительности Эйнштейна. Совершив еще более радикальный разрыв с прошлым, квантовая механика изменила сам язык, который мы используем для описания природы: вместо того, чтобы говорить о частицах, имеющих определенные положение и скорость, мы научились говорить о волновых функциях и вероятностях. Слияние теории относительности с квантовой механикой привело к новому видению мира, в котором вещество перестало играть главенствующую роль. Эта роль перешла к принципам симметрии, причем на данном этапе развития Вселенной некоторые из них скрыты от взгляда наблюдателя. На такой основе нам удалось построить удовлетворительную теорию электромагнетизма, а также слабых и сильных ядерных взаимодействий элементарных частиц. Часто ученые чувствовали себя как Зигфрид, который, попробовав крови дракона, с удивлением обнаружил, что может понимать язык птиц.

Но сейчас мы застряли. Годы, прошедшие с середины 1970?х, были самыми бесплодными в истории физики элементарных частиц. Мы расплачиваемся за собственные успехи: теория продвинулась так далеко, что дальнейший прогресс требует изучения процессов, происходящих при энергиях, далеко выходящих за пределы возможностей существующих экспериментальных установок.

Чтобы выйти из тупика, физики еще в 1982 г. начали планировать строительство научной установки беспрецедентных размеров и стоимости, получившей название Сверхпроводящий суперколлайдер (ССК). В этом проекте предполагается прорыть овальный туннель длиной около 85 км к югу от Далласа. Тысячи сверхпроводящих магнитов, расположенных внутри этого подземного туннеля, должны заставить совершить миллионы оборотов по кольцу два встречных пучка электрически заряженных частиц – протонов, пока они не ускорятся до энергии, в двадцать раз большей, чем максимальная энергия, достижимая на существующих ускорителях. В нескольких точках вдоль кольца протоны обоих пучков будут миллионы раз в секунду сталкиваться друг с другом, а громадные детекторы, некоторые весом в десятки тысяч тонн, будут регистрировать результаты этих соударений. Стоимость проекта была оценена в 8 миллиардов долларов.

Идея постройки Суперколлайдера вызвала сильное противодействие, и не только со стороны бережливых конгрессменов, но и со стороны ряда ученых, которые хотели бы, чтобы деньги тратились на исследования именно в их области. Всегда хватало брюзжания по поводу так называемой большой науки, и мишенью многих ворчунов стал ССК. В то же время объединение европейских ученых, известное под названием ЦЕРН[1], рассматривает возможность постройки похожей установки – Большого Адронного Коллайдера (БАК). Эта установка будет стоить меньше, чем ССК, так как в ней предполагается использовать уже существующий туннель, прорытый под Юрскими горами вблизи Женевы, но по ряду причин энергия частиц на этом ускорителе будет составлять менее половины той, которая планируется на ССК. Во многих отношениях споры в США по поводу ССК похожи на споры в Европе о том, стоит ли строить БАК.

Первое издание этой книги вышло в свет в 1992 г. К этому времени финансирование ССК, остановленное июньским решением Палаты представителей, было восстановлено августовским решением Сената. Будущее Суперколлайдера было бы обеспечено, если бы проект получил заметную иностранную поддержку, но пока что этим и не пахнет. Похоже, что если финансирование проекта и прорвется через конгресс в этом году[2], то в следующем опять возникнет угроза приостановки финансирования, и так будет каждый год, пока проект не будет завершен[3]. Может случиться, что последние годы ХХ в. станут свидетелями прекращения эпохальных поисков оснований физической науки, возобновление которых произойдет, возможно, спустя много лет.

Эта книга совсем не о Суперколлайдере. Однако споры о проекте заставили меня в ряде публичных выступлений и во время слушаний в конгрессе попытаться объяснить, что же мы пытаемся выяснить, изучая элементарные частицы. Кому?то может показаться, что после тридцати лет работы в области физики это было для меня достаточно легко, но все оказалось не так?то просто.

Для меня самого удовольствие, получаемое от работы, всегда было достаточным основанием для того, чтобы ее делать. Сидя за своим столом или где?нибудь в кафе, я манипулирую математическими формулами и чувствую себя как Фауст, играющий в пентаграммы, прежде чем появился Мефистофель. Очень редко математические абстракции, экспериментальные данные и физическая интуиция соединяются в определенную теорию частиц, сил и симметрий. Еще реже теория оказывается правильной; иногда эксперименты подтверждают, что природа действительно следует тем законам, которые теория предсказывает.

Но это не все. Для физиков, чья деятельность связана с элементарными частицами, имеется и другая побудительная причина для работы, которую значительно труднее объяснить даже самому себе.

Существующие теории ограничены, они все еще не полны и не окончательны. Но за ними здесь и там мы улавливаем проблески окончательной теории, которая будет иметь неограниченную применимость и будет полностью удовлетворять нас своей полнотой и согласованностью. Мы ищем универсальные истины о природе и, когда мы их находим, пытаемся объяснить их, показав, каким образом они выводятся из еще более глубоких истин. Представьте себе пространство научных принципов, заполненное стрелками, указывающими на каждый принцип и исходящими из тех принципов, которыми объясняются последующие. Эти стрелы объяснений уже сегодня выявляют любопытную структуру: они не образуют отдельных, не связанных с другими, скоплений, соответствующих независимым наукам, и они не направлены хаотично и бесцельно. Наоборот, все они связаны, так что если двигаться к началу стрелок, то кажется, что все они выходят из общей точки. Эта начальная точка, к которой можно свести все объяснения, и есть то, что я подразумеваю под окончательной теорией.

Можно уверенно утверждать, что сейчас у нас нет окончательной теории, и похоже, что она не скоро появится. Но время от времени мы ловим намеки на то, что до нее не так уж и далеко. Иногда во время дискуссий с физиками вдруг выясняется, что математически красивые идеи имеют действительное отношение к реальному миру, и тогда возникает чувство, что там, за доской, есть какая?то более глубокая истина, предвестник окончательной теории. Именно это и делает наши идеи привлекательными.

Когда мы размышляем об окончательной теории, на ум приходят тысячи вопросов и определений. Что мы имеем в виду, говоря, что один научный принцип «объясняет» другой? Откуда мы знаем, что у всех этих объяснений есть общая начальная точка? Откроем ли мы когда?нибудь эту точку? Насколько мы сейчас близки к этому? На что будет похожа окончательная теория? Какие разделы современной физики выживут и сохранятся в окончательной теории? Что будет говорить эта теория о феноменах жизни и сознания? И наконец, когда мы откроем эту окончательную теорию, то что же будет дальше с наукой и с человеческим разумом? Мы лишь коснемся этих вопросов в первой главе, оставляя более подробный ответ до остальной части книги.

Мечта об окончательной теории родилась не в ХХ в. В западной цивилизации ее можно проследить вглубь веков до той научной школы, которая расцвела за сто лет до рождения Сократа в греческом городе Милете на берегу Эгейского моря, в устье реки Меандр. Мы, на самом деле, мало знаем о мыслях досократиков, но последующие ссылки и несколько оригинальных фрагментов, дошедших до нас, позволяют предположить, что уже милетцы искали объяснение всех природных явлений с помощью фундаментальных составляющих материи. Для Фалеса, первого среди милетских философов, фундаментальной сущностью была вода; для Анаксимена, последнего философа этой школы, такой сущностью был воздух.

В наши дни воззрения Фалеса и Анаксимена вызывают улыбку. Намного больше восхищают идеи той школы, которая возникла сто лет спустя в городе Абдере на морском берегу Фракии. Там Демокрит и Левкипп учили, что все вещество состоит из крохотных вечных частичек, названных ими атомами. (Заметим, что атомизм имеет корни в индийской метафизике, возникшей задолго до Демокрита и Левкиппа.) Эти ранние атомисты кажутся чудесным образом опередившими свое время, но, с моей точки зрения, не так уж и важно, что милетцы «ошибались», в то время как атомная теория Демокрита и Левкиппа была в определенном смысле «правильной». Ни один из досократиков, ни в Милете, ни в Абдере, не высказал никаких идей, похожих на наши современные представления о том, что? означает успешное научное объяснение: количественное  понимание явления. Далеко ли мы продвинулись бы по пути понимания того, почему природа такая, какая она есть, если бы Фалес и Демокрит говорили бы нам, что камень состоит из воды или атомов, но при этом не знали бы, как вычислить его плотность, твердость или электрическое сопротивление? Не умея делать количественные предсказания, мы при этом, конечно, никогда бы не выяснили, кто же прав – Фалес или Демокрит.

Когда мне доводилось преподавать физику в Техасе или в Гарварде для студентов?гуманитариев младших курсов, я чувствовал, что моей главной (и, безусловно, самой трудной) задачей было передать студентам ощущение могущества человека, способного детально рассчитать, что может при определенных обстоятельствах случиться с разными физическими системами. Я учил их рассчитывать отклонение катодных лучей или падение капельки масла не потому, что каждый должен обязательно уметь делать такие вещи, а потому что выполняя эти расчеты, они могут самостоятельно понять, что в действительности означают принципы физики. Наше знание принципов, определяющих эти и другие явления, составляет сердцевину физической науки и драгоценную часть нашей цивилизации.

С этой точки зрения «физика» Аристотеля была не лучше, чем более ранние и менее премудрые рассуждения Фалеса и Демокрита. В книгах «Физика» и «О небе» Аристотель описывает движение снаряда, считая его частично естественным, а частично неестественным[4]. Естественное движение, как и для всех тяжелых тел, направлено вниз, к центру всех вещей, а неестественное движение сообщается воздухом, движение которого можно проследить независимо от того, что привело снаряд в движение. Но насколько быстро летит снаряд по своей траектории и как далеко он улетит, прежде чем упадет на землю? Аристотель не утверждает, что вычисления или измерения слишком трудны или что в данный момент не все еще известно о тех законах, которые могли бы привести к детальному описанию движения снаряда. На самом деле Аристотель не предлагает никакого ответа, ни правильного, ни ошибочного, потому что он не понимает, что такие вопросы стоит задавать.

А почему их стоит задавать? Читателя, как и Аристотеля, может мало заботить, с какой скоростью падает снаряд. Мне самому это безразлично. Важно то, что теперь мы знаем принципы  – ньютоновские законы движения и тяготения, а также уравнения аэродинамики – которые точно определяют, где окажется снаряд в любой момент своего полета. Я не утверждаю, что мы на самом деле можем точно вычислить, как движется снаряд. Обтекание воздухом бесформенного камня или оперения стрелы сложно, поэтому наши вычисления будут лишь приближенными, особенно в случае турбулентных потоков воздуха. Существует и проблема определения точных начальных условий. Тем не менее мы можем использовать известные нам физические принципы для решения более простых задач, вроде движения планет в безвоздушном пространстве или стационарного обтекания воздухом шаров или пластин, и этого достаточно, чтобы убедиться, что мы действительно знаем принципы, управляющие полетом снаряда. Точно так же, мы не можем рассчитать ход биологической эволюции, но достаточно хорошо знаем теперь те принципы, которыми она управляется.

Это существенное различие, понимание которого может увязнуть в тине споров о смысле или о самом существовании окончательных законов природы. Когда мы говорим, что одна истина объясняет другую, например, физические принципы (законы квантовой механики), управляющие движением электронов в электрических полях, объясняют законы химии, мы не обязательно подразумеваем под этим, что мы способны последовательно вывести утверждаемые нами истины. Иногда вывод удается завершить, как, например, в случае химических свойств очень простой молекулы водорода. Но иногда задача оказывается чересчур сложной. Подобным образом трактуя научные объяснения, мы подразумеваем не то, что ученые могут реально вывести, а ту необходимость, которая заложена в самой природе. Например, даже до того, как физики и астрономы XIX в. научились учитывать взаимное притяжение планет при точном расчете их орбит, они не сомневались в том, что планеты движутся так, а не иначе, потому что их движение подчиняется законам Ньютона и закону всемирного тяготения или более точным законам, приближенной формой которых являются законы Ньютона. В наши дни, хотя мы и не можем предсказать все, что способны наблюдать химики, мы уверены, что атомы ведут себя в химических реакциях так, а не иначе, потому что физические принципы, управляющие электронами и электрическими полями, не позволяют атомам вести себя иным образом.

Это довольно запутанное место, отчасти потому, что очень трудно утверждать, что один факт объясняет другой, если ты сам не в силах проделать этот вывод. Но я думаю, что мы должны рассуждать именно таким образом, так как это и является содержанием  нашей науки: поиск объяснений, вписывающихся в логическую структуру природы. Конечно, мы чувствуем значительно большую уверенность в том, что найдено правильное объяснение, если действительно способны проделать хоть какие?нибудь  вычисления и сравнить результаты с наблюдениями, например, в случае химических свойств если уж не белков, то хоть водорода.

Хотя греки и не ставили своей целью подробное и количественное объяснение явлений природы, все же рассуждения, основанные на точных расчетах, безусловно были известны в древности. Тысячелетиями люди знали о правилах арифметики и плоской геометрии, о главнейших периодичностях в движении Солнца, Луны и звезд, включая такие тонкости, как прецессия осей вращения. Кроме того, после Аристотеля начался расцвет математики, продолжавшийся всю эллинистическую эпоху, охватывающую период времени от завоеваний ученика Аристотеля Александра Македонского вплоть до поглощения греческой цивилизации Римом. Изучая философию на младших курсах, я чувствовал некоторое раздражение, когда слышал, что греческих философов Фалеса и Демокрита называют физиками; но когда мы перешли к великим ученым эпохи эллинизма, Архимеду из Сиракуз, открывшему законы рычага, или Эратосфену из Александрии, измерившему длину земного экватора, я стал ощущать себя, как дома среди друзей?ученых. Нигде в мире не было ничего похожего на эллинистическую науку вплоть до расцвета современной науки в Европе в XVII в.

Все же, несмотря на весь блеск, эллинистическая натуральная философия и близко не приближалась к идее о своде законов, точно управляющих всей  природой. На самом деле слово «закон» редко употреблялось в античности[5] (Аристотель вообще его не использовал), кроме как в первоначальном смысле человеческих или божественных законов, управляющих поведением людей. (Правда, слово «астрономия» происходит от двух греческих слов: астрон  – звезда и номос  – закон, но этот термин был значительно менее употребителен в античное время, чем слово «астрология».) Вплоть до работ Галилея, Кеплера и Декарта в XVII в. мы не находим понятия, соответствующего современному «законы природы».

Специалист по античности Петер Грин полагает, что ограниченность греческой науки в значительной степени была обусловлена присущим грекам стойким интеллектуальным снобизмом, их предпочтением статики динамике, размышлений технологии, за исключением военных приложений[6]. Первые три царя эллинистической Александрии поддерживали исследования полета снарядов в связи с очевидными военными приложениями, но грекам показалось бы совершенно неестественным применить точные рассуждения для решения какой?нибудь банальной задачи вроде скатывания шарика по наклонной плоскости, именно той задачи, которая высветила Галилею законы движения. В современной науке полно такого же снобизма – биологи больше занимаются генами, чем воспалением суставов, а физики скорее предпочтут изучать протон?протонные соударения при энергии 20 триллионов электрон?вольт (эВ), чем просто 20 эВ. Но это снобизм тактического порядка, основанный на мнении (правильном или ошибочном), что некоторые явления дают больше для понимания, а не на убеждении, что какие?то явления более важны, чем другие.

Современные мечты об окончательной теории берут начало от Исаака Ньютона. На самом деле количественное научное мышление никогда не прерывалось и ко времени появления Ньютона оно уже получило новый импульс, особенно в трудах Галилея. Но именно Ньютон сумел так много объяснить с помощью своих законов движения и закона тяготения, начиная с формы орбит планет и их спутников и кончая приливами и законом падения яблок, что он должен был впервые почувствовать возможности действительно последовательной объясняющей теории. Надежды Ньютона были выражены в предисловии к первому изданию его великой книги «Математические начала натуральной философии»: «Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все эти явления обусловливаются некоторыми силами…». Двадцатью годами позднее, в «Оптике», Ньютон описал, как, по его мнению, могла бы осуществиться такая программа[7]:

«Мельчайшие частички материи слепляются в результате сильнейшего притяжения, образуя частицы большего размера, но уже менее склонные к притяжению; многие из этих частиц могут опять слепляться, образуя еще большие частицы с еще меньшим притяжением друг к другу, и так далее в разных последовательностях, пока эта прогрессия не закончится на самых больших частицах, от которых зависят уже и химические реакции, и цвет естественных тел, и которые образуют, наконец, тела ощутимых размеров. Если так, то в природе должны существовать посредники, помогающие частицам вещества близко слепляться друг с другом за счет сильного притяжения. Обнаружение этих посредников и есть задача экспериментальной философии».

Великий пример Ньютона породил, особенно в Англии, характерный стиль научного объяснения: вещество полагалось состоящим из крошечных неделимых частиц; частицы действуют друг на друга с «различными силами», одной из разновидностей которых является сила тяготения; зная положения и скорости этих частиц в любой момент времени, и зная, как вычислить силы, действующие между ними, можно воспользоваться законами движения, чтобы предсказать, где они окажутся в любой последующий момент. До сих пор новичкам часто преподают физику в таком духе. К сожалению, несмотря на все успехи ньютоновского стиля рассуждений, это был тупиковый путь.

Мир все?таки сложная штука. Чем больше узнавали ученые о химии, свете и электричестве в XVIII и XIX вв., тем более неосуществимой должна была казаться возможность объяснения этих явлений в ньютоновском духе. В частности, для того чтобы объяснить химические реакции и химическое сродство элементов, рассматривая атомы как ньютоновские частицы, движущиеся под действием сил взаимного притяжения и отталкивания, физики вынуждены были делать столько дополнительных предположений об атомах и силах, что реально ничего нельзя было довести до конца.

Несмотря на это к 1890?м гг. многими учеными овладело странное чувство завершенности науки. В научном фольклоре сохранилась апокрифическая история о каком?то физике, который объявил в конце столетия, что физика практически завершена и все, что осталось, это провести измерения с точностью до нескольких следующих знаков после запятой. Похоже, что эта история восходит к замечанию, сделанному в 1894 г. американским физиком?экспериментатором Альбертом Майкельсоном в речи в Чикагском университете: «Хотя и рискованно утверждать, что будущее Физической Науки не хранит в себе чудес, еще более поразительных, чем открытые в прошлом, вполне вероятно, что большинство важнейших основополагающих принципов уже надежно установлено и что дальнейшие успехи возможны, главным образом, на пути поиска строгих приложений этих принципов ко всем явлениям, привлекающим наше внимание… Один видный физик заметил, что будущее Физической Науки следует искать в шестом знаке после запятой». Присутствовавший в зале во время выступления Майкельсона другой американский физик?экспериментатор Роберт Милликен предположил[8], что «видный физик», которого имел в виду Майкельсон, был влиятельный шотландец Уильям Томсон, лорд Кельвин. Один приятель[9] говорил мне, что когда он был студентом Кембриджа в конце 1940?х гг., он часто слышал приписываемое Кельвину высказывание, что в физике не будет никаких новых открытий, и все, что осталось – это делать все более точные измерения.

Я не смог обнаружить подобного высказывания в собрании речей лорда Кельвина, но имеется достаточно других свидетельств широко распространенного, хотя и не всеобщего, ощущения завершенности науки[10] к концу девятнадцатого столетия. Когда молодой Макс Планк поступал в 1875 г. в Мюнхенский университет, профессор физики Филипп Джолли отговаривал его заниматься наукой. По мнению Джолли, уже нечего было открывать. Милликен получил тот же совет. Он вспоминал: «В 1894 г. я жил на пятом этаже в доме на Шестьдесят четвертой улице в западной части Бродвея с четырьмя другими аспирантами Колумбийского университета, одним медиком и тремя будущими социологами и политологами, и все время подвергался с их стороны нападкам за то, что я занимаюсь “конченным”, да, именно “дохлым делом” – физикой, в то время как сейчас открываются новые “живые” области общественных наук».

Часто эти примеры самодовольства ученых XIX в. приводятся как предупреждение тем из нас в двадцатом столетии, кто осмеливается рассуждать об окончательной теории. Но это искажает смысл тех самоуверенных высказываний. Майкельсон, Джолли и соседи Милликена, возможно, и не задумались о том, что природа химического притяжения уже была успешно объяснена физиками, а еще менее о том, что механизмы наследования были уже успешно объяснены химиками. Те, кто высказывались подобным образом, могли так говорить только потому, что они перестали верить в мечту Ньютона и его последователей о том, что химию и другие науки можно объяснить с точки зрения законов физики, для них химия и физика были равноправными науками, причем каждая близкой к завершению. Какой бы широко распространенной не была точка зрения о завершенности науки в конце XIX в., она свидетельствовала лишь о самоуспокоенности, которая сопутствует угасанию амбиций.

Но дела стали быстро меняться. Для физиков ХХ в. начался в 1895 г., когда Вильгельм Рентген неожиданно открыл рентгеновские лучи. Важны были не рентгеновские лучи сами по себе; скорее, их открытие воодушевило физиков и заставило их поверить, что есть еще вещи, которые можно открыть, особенно, если изучать разного рода излучения. И открытия быстро последовали одно за другим. В Париже в 1896 г. Анри Беккерель открыл радиоактивность. В Кембридже в 1897 г. Дж. Дж. Томсон измерил отклонение катодных лучей электрическим и магнитным полями и интерпретировал свои результаты как свидетельство существования фундаментальной частицы – электрона, входящей в состав всякого вещества, а не только катодных лучей. В Берне в 1905 г. Альберт Эйнштейн (еще не будучи членом академического сообщества) представил новый взгляд на пространство и время в своей специальной теории относительности, предложил новый способ демонстрации существования атомов и объяснил более раннюю работу Макса Планка о тепловом излучении, введя понятие о новой элементарной частице – световой корпускуле, названной позднее фотоном. Чуть позже, в 1911 г., Эрнест Резерфорд на основании результатов экспериментов с радиоактивными элементами, выполненных в Манчестерской лаборатории, сделал вывод, что атомы состоят из маленького массивного ядра, окруженного облаком электронов. Наконец, в 1913 г. датский физик Нильс Бор использовал эту модель атома и идею Эйнштейна о фотонах для объяснения спектра простейшего атома водорода. Самоуспокоенность сменилась возбуждением; физики почувствовали, что окончательная теория, объединяющая по крайней мере всю физическую науку, может быть скоро построена.

Уже в 1902 г. ранее вполне удовлетворенный Майкельсон смог заявить: «Скоро наступит день, когда нити, идущие от кажущихся совершенно далекими друг от друга областей знания, соединятся в одной точке. Тогда природа атомов, происхождение сил, действующих в химических соединениях, взаимодействие этих атомов с невидимым эфиром, проявляющееся в явлениях электричества и магнетизма, структура молекул и молекулярных соединений, состоящих из атомов, объяснение трения, упругости и тяготения – все это сольется в единое и компактное тело научного знания»[11]. Хотя до этого Майкельсон полагал, что физика уже завершена, так как он не думал, что физика должна объяснять химию, то теперь он уже ожидал совершенно иного завершения науки в ближайшем будущем, включающего как физику, так и химию.

Все эти высказывания были несколько преждевременными. На самом деле мечта об окончательной объединяющей теории начала вырисовываться в середине 1920?х гг. после открытия квантовой механики. Вместо частиц и сил ньютоновской механики в физике возник совершенно новый подход, использующий понятия волновых функций и вероятностей. Неожиданно квантовая механика позволила рассчитать не только свойства отдельных атомов и их взаимодействие с излучением, но и свойства атомов, объединенных в молекулы. Наконец?то стало ясно, что химические явления таковы, каковы они есть, благодаря электрическим взаимодействиям электронов и атомных ядер.

Не следует думать, что курсы лекций по химии в колледжах начали читать профессора физики или что Американское Химическое общество вошло в состав Американского Физического общества. Чтобы вычислить силу связи двух атомов водорода в простейшей молекуле водорода, используя уравнения квантовой механики, нужно преодолеть заметные трудности; чтобы иметь дело со сложными молекулами, особенно с теми, которые связаны с биологией, и понимать, как они будут реагировать в разных условиях, нужны особый опыт и интуиция химика. Однако успех квантовой механики в расчете свойств очень простых молекул сделал очевидным тот факт, что химические явления обусловлены физическими законами. Поль Дирак, один из основоположников новой квантовой механики, торжествующе объявил в 1929 г., что «наконец?то полностью известны основополагающие физические законы, необходимые для построения математической теории большей части физики и всей химии, и единственная трудность заключается в том, что в результате применения этих законов мы приходим к слишком сложным для решения уравнениям»[12].

Вскоре возникла новая странная проблема. Первые квантовомеханические расчеты энергий атомов дали результаты, находившиеся в хорошем согласии с опытом. Но когда квантовую механику начали использовать для описания не только электронов в атомах, но и порождаемых этими электронами электрических и магнитных полей, оказалось, что энергия самого атома равна бесконечности! В других вычислениях появились другие бесконечности, так что в течение четырех десятилетий этот абсурдный результат представлялся главным тормозом на пути прогресса физики. В конце концов проблема бесконечностей оказалась совсем не такой ужасной, более того, она стала одним из главных аргументов, прибавивших оптимизма в отношении возможности построения окончательной теории. Если должным образом позаботиться об определении масс, электрических зарядов и других констант, все бесконечности взаимно уничтожаются, но только в теориях специального  вида. Поэтому можно думать, что математика подвела нас к какой?то части окончательной теории, поскольку это единственный способ избежать появления бесконечностей. На самом деле новая загадочная теория струн может быть уже указывает тот единственный путь, который позволяет избежать бесконечностей при объединении теории относительности (включая общую теорию относительности, т.е.[13] эйнштейновскую теорию тяготения) с квантовой механикой. Если это так, то нам известна уже значительная часть окончательной теории.

Я совсем не имею в виду, что окончательная теория будет выведена из чистой математики. Помимо всего прочего, почему мы должны верить, что теория относительности, равно как и квантовая механика, логически неизбежны? Мне кажется, что самое большее, на что можно надеяться, это построить окончательную теорию как очень жесткую структуру, которая не может быть превращена в какую?то немного отличающуюся теорию без появления логически абсурдных результатов вроде бесконечных энергий.

Еще один повод для оптимизма связан с тем странным фактом, что прогресс в физике часто основан на суждениях, которые можно охарактеризовать только как эстетические. Это очень удивительно. Каким образом ощущение физика, что одна теория красивее другой, может служить проводником в научном поиске? Этому есть несколько возможных причин, но одна из них относится конкретно к физике элементарных частиц: красота наших сегодняшних теорий может быть «всего лишь грезой» о той красоте, которая ожидает нас в окончательной теории.

В ХХ в. именно Альберт Эйнштейн был наиболее одержим идеей построения окончательной теории. Как пишет его биограф Абрахам Пайс, «Эйнштейн – типичная старозаветная личность, по примеру Иеговы уверенная, что миром правит закон, и его нужно найти»[14]. Последние тридцать лет жизни Эйнштейна были большей частью потрачены на поиски так называемой единой полевой теории, которая должна была объединить теорию электромагнетизма Джеймса Клерка Максвелла с общей теорией относительности, т.е. теорией тяготения Эйнштейна. Попытки Эйнштейна не увенчались успехом, и задним числом мы можем сказать, что они были ошибочны. Дело не только в том, что Эйнштейн пренебрег квантовой механикой; круг рассматриваемых им явлений был слишком узок. Электромагнетизм и гравитация являются единственными фундаментальными силами, проявляющимися в повседневной жизни (и единственными силами, известными в те времена, когда Эйнштейн был молодым человеком), но существуют и другие силы в природе, включая слабые и сильные ядерные силы. Прогресс, достигнутый на пути объединения, заключался на самом деле в том, что максвелловская теория электромагнитных сил объединилась с теорией слабых ядерных сил, а не с теорией тяготения, для которой решить проблему с бесконечностями значительно труднее. Тем не менее битва Эйнштейна стала нашей сегодняшней битвой. Это и есть поиск окончательной теории.

Разговоры об окончательной теории очень раздражают некоторых философов и ученых. Появляются обвинения в чем?то ужасном, вроде редукционизма или, еще хуже, физического империализма. Частично, это реакция на разного рода глупости, которые могут быть связаны с окончательной теорией, например, на утверждение, что открытие такой теории в физике будет означать конец науки. Конечно, с появлением окончательной теории не будут прекращены ни научные исследования вообще, ни чисто научные изыскания, ни даже чисто научные изыскания в физике. Чудесные явления, от турбулентности до феномена сознания, будут нуждаться в объяснении, даже если окончательная теория будет построена. Более того, открытие этой теории в физике совсем не обязательно поможет прогрессу в понимании упомянутых явлений. Окончательная теория будет окончательной лишь в одном смысле – она станет концом определенного типа науки, а именно восходящего к древности поиска таких фундаментальных основ мироздания, которые нельзя объяснить с помощью еще более глубоких принципов.

Глава II. О кусочке мела

 

Шут: …Любопытна причина, по которой в семизвездье семь звезд, а не больше.

Лир: Потому что их не восемь?

Шут: Совершенно верно. Из тебя вышел бы хороший шут…

В. Шекспир. Король Лир[15]. Акт 1, сцена 5

Ученые сделали множество необычных и прекрасных открытий. Возможно, самым прекрасным и самым необычным из них является открытие структуры самой науки. Наши научные достижения – не разрозненный набор изолированных фактов; одно научное обобщение находит свое объяснение в другом, которое в свою очередь вытекает из следующего. Прослеживая эти стрелки объяснений назад к их источникам, мы обнаруживаем поразительную сходящуюся структуру. Может быть, это и есть глубочайшая из всех истин, постигнутых нами при изучении Вселенной.

Рассмотрим кусочек мела. Это вещество знакомо большинству людей (особенно физикам, которые общаются друг с другом с помощью доски), но я выбрал мел в качестве примера потому, что он явился в свое время объектом полемики, ставшей знаменитой в истории науки. В 1868 г. Ассоциация британских ученых проводила свое ежегодное собрание в большом городе Норвич, главном городе графства на востоке Англии. Для ученых и студентов, собравшихся в Норвиче, это было волнующим событием. В те годы внимание общественности было привлечено к науке не только из?за ее очевидной важности для развития техники, но в еще большей степени из?за того, что наука изменяла взгляды людей на мир и их место в нем. Публикация девятью годами ранее сочинения Дарвина «О происхождении видов путем естественного отбора» резко противопоставила науку доминирующей религии того времени. На собрании присутствовал Томас Генри Хаксли – выдающийся анатом и яростный спорщик, которого современники прозвали «бульдогом Дарвина». Как это часто бывало и ранее, Хаксли воспользовался случаем, чтобы выступить перед гражданами города. Он назвал свою лекцию «О кусочке мела»[16]

Я представляю себе Хаксли стоящим на трибуне и держащим в руках кусочек мела, может быть отломанный им от тех залежей, которые простираются под городом Норвичем, или одолженный у знакомого плотника, а может, у какого?нибудь профессора. Он начал свою лекцию с описания того, как слой мела на глубине в несколько сотен футов простирается не только под большей частью Англии, но и под всей Европой и странами Леванта, вплоть до Центральной Азии. Мел в основном состоит из простого химического вещества, называемого на современном языке карбонатом кальция, однако микроскопическое исследование показывает, что в нем содержится бесчисленное множество скелетов крохотных существ, населявших те древние моря, которые покрывали когда?то Европу. Хаксли живо описывал, как в течение миллионов лет эти скелетики оседали на дно моря и спрессовывались в мел, как то здесь, то там в эти отложения попадали скелеты более крупных животных, похожих на крокодила, причем при переходе к более глубоким слоям мела эти животные выглядят все более непохожими на своих современных потомков, и следовательно они должны были эволюционировать все те миллионы лет, пока мел оседал.

Хаксли пытался убедить присутствующих, что мир гораздо старше, чем те шесть тысяч лет, которые отведены ему последователями Библии, и что новые живые существа появлялись и эволюционировали с самого начала. Все эти утверждения сейчас общеприняты – никто, имеющий хоть малейшее представление о науке, не сомневается в большом возрасте Земли или реальности эволюции. То, что я хочу обсудить, не имеет никакого отношения к конкретному разделу научного знания, а относится к тому, как все эти знания связаны друг с другом. Именно поэтому я, как и Хаксли, начну с кусочка мела.

Мел белый. Почему?  Один ответ, который можно дать сразу, таков: мел белый потому, что он не какого?то другого цвета. Такой ответ безусловно понравился бы лировскому шуту, но на самом деле он не так уж далек от истины. Уже во времена Хаксли знали, что каждый цвет в радуге связан со светом определенной длины волны – более длинные волны соответствуют красному концу спектра, более короткие – голубому. Белый свет рассматривался как смесь света многих разных цветов. При падении света на непрозрачное вещество вроде мела только часть его отражается, а другая часть поглощается. Вещество определенного цвета, например зелено?синего, присущего многим соединениям меди (медно?алюминиевые фосфаты в турмалине) или синего, характерного для соединений хрома, имеет такой цвет потому, что вещество поглощает свет строго определенных длин волн; цвет, который мы видим в свете, отраженном от вещества, связан со светом тех длин волн, которые поглощаются не слишком сильно . Оказывается, что карбонат кальция, из которого и состоит мел, особенно сильно поглощает свет только в области инфракрасных и ультрафиолетовых длин волн, все равно не видимых глазом. Поэтому свет, отраженный от куска мела, имеет практически такое же распределение по длинам волн видимого света, как и свет, падающий на мел. Благодаря этому и возникает ощущение белизны, будь то у мела, облака или снега.

Почему?  Почему некоторые вещества сильно поглощают видимый свет определенных длин волн, а другие нет? Оказывается, ответ связан со сравнительными энергиями атомов и света. Ученые начали понимать это после работ Альберта Эйнштейна и Нильса Бора, сделанных в первые два десятилетия ХХ в. Эйнштейн в 1905 г. впервые понял, что световой луч состоит из потока колоссального количества частиц, позднее названных фотонами . У фотонов нет ни массы, ни электрического заряда, но каждый фотон обладает определенной энергией, величина которой обратно пропорциональна длине волны света. В 1913 г. Бор предположил, что атомы и молекулы могут существовать только в определенных состояниях , т.е. стабильных конфигурациях, обладающих определенной энергией. Хотя атомы часто сравнивают с миниатюрными Солнечными системами, все же существует принципиальное различие. Любой планете Солнечной системы можно придать чуть больше или чуть меньше энергии, просто подвинув ее чуть дальше от Солнца или, наоборот, придвинув к нему. Но состояния атома дискретны  – мы не можем изменять энергии атомов иначе, как на определенную конечную величину. Обычно атом или молекула находятся в состоянии с наименьшей энергией. Но, поглощая свет, они перескакивают из состояния с наименьшей энергией в одно из состояний с большей энергией (при испускании света происходит обратный процесс). Если объединить идеи Эйнштейна и Бора, то получается, что свет может поглощаться атомом или молекулой, только если длина волны света принимает определенное значение. Эти определенные длины волн отвечают таким энергиям фотонов, которые как раз равны разности энергий между начальным состоянием атома или молекулы и одним из состояний с большей энергией. В противном случае при поглощении фотона атомом или молекулой не сохранялась бы энергия. Типичные соединения меди имеют зелено?синий цвет, потому что существует определенное состояние атома меди, обладающее энергией, на два электрон?вольта[17] большей, чем энергия нормального состояния атома. Поэтому атом особенно легко перепрыгивает в состояние с большей энергией, поглотив фотон с энергией 2 эВ. Длина волны такого фотона равна 0,62 мкм, что соответствует красно?оранжевому цвету, так что после поглощения этого фотона оставшийся отраженный свет имеет зелено?синий оттенок[18]. (Приведенное рассуждение – не просто крайне сложный способ объяснить то, что мы и так знаем про зелено?синий цвет соединений меди; подобная структура энергетических состояний атомов меди проявляется и тогда, когда они получают извне энергию другими способами, например, от пучка электронов.) Мел имеет белый цвет потому что у молекул, из которых он состоит, оказывается, нет таких уровней энергии, куда можно легко перепрыгнуть, поглощая фотоны любого цвета из видимого света.

Почему?  Почему атомы и молекулы существуют только в дискретных состояниях, обладающих определенной энергией? Почему эти энергии такие, а не другие? Почему свет состоит из отдельных частиц, энергия которых обратно пропорциональна длине волны света? И почему атомы или молекулы особенно легко перепрыгивают в определенные состояния, поглощая фотоны? Все эти свойства света, атомов и молекул было невозможно понять вплоть до середины 1920?х гг., когда был развит новый подход в физике, известный как квантовая механика. В рамках квантовой механики частицы в атоме или молекуле описываются так называемой волновой функцией. Эта функция ведет себя в чем?то похоже на волну света или звука, но ее значение (точнее, значение ее квадрата) определяет вероятность обнаружения частицы в любом данном месте. Точно так же, как воздух в органной трубе может колебаться только в определенных модах, каждая из которых имеет свою длину волны, так и волновая функция частицы в атоме или молекуле может существовать только в определенных модах или квантовых состояниях, каждое из которых имеет свою определенную энергию. Когда уравнения квантовой механики применили для рассмотрения атома меди, обнаружилось, что один из электронов на далекой внешней орбите этого атома слабо связан и в результате поглощения видимого света может быть легко переброшен на следующую более высокую орбиту. Квантовомеханические вычисления показали, что энергии атома в этих двух состояниях отличаются на два электрон?вольта, что как раз равно энергии фотона красно?оранжевого света[19]. С другой стороны, у молекул карбоната кальция в куске мела нет подобных слабосвязанных электронов, которые могли бы поглотить фотоны какой?нибудь длины волны. Что же касается фотонов, то их свойства объясняются применением принципов квантовой механики к самому свету. Оказывается, что свет, как и атомы, может существовать только в определенных квантовых состояниях с определенной энергией. Например, красно?оранжевый свет длиной волны 0,62 мкм может существовать только в состояниях с энергиями, равными нулю или 2, 4, 6 и т.д. эВ, которые мы интерпретируем как состояния без фотонов или содержащие один, два, три и т.д. фотонов, энергия каждого из которых равна 2 эВ.

Почему?  Почему уравнения квантовой механики, определяющие поведение частиц в атомах, таковы, каковы они есть? Почему вещество состоит из этих частиц, электронов и атомных ядер? Почему в этом веществе возникает излучение света? Большая часть этих вопросов была довольно загадочной и в 1920?е, и в 1930?е гг., когда квантовая механика была впервые применена для описания атомов и света. Достаточное понимание пришло лишь около пятнадцати лет тому назад[20] в связи с успешным развитием так называемой стандартной модели  элементарных частиц и сил. Ключевым предварительным условием этого нового понимания было объединение в 1940?х гг. квантовой механики с другой революционной теорией в физике ХХ в. – эйнштейновской теорией относительности. Принципы теории относительности и квантовой механики почти несовместимы друг с другом и могут сосуществовать лишь в рамках очень узкого класса теорий. В рамках нерелятивистской квантовой механики 1920?х гг. можно было вообразить почти любой характер сил, действующих между электронами и ядрами, но в релятивистской теории, как мы увидим, это не так: силы, действующие между частицами, могут возникать только за счет обмена другими частицами. Более того, вообще все частицы представляют собой сгустки энергии или кванты полей разного сорта. Поле, например электрическое или магнитное, есть некий вид напряжения в пространстве, напоминающий разные виды напряжений, возможные в твердом теле, с той разницей, что поле есть напряжение самого пространства. Каждому сорту элементарных частиц соответствует свой тип поля: в рамках стандартной модели имеется электронное поле, квантами которого являются электроны; электромагнитное поле (состоящее из электрического и магнитного полей), квантами которого являются фотоны; однако не существует поля, соответствующего атомным ядрам или частицам (протонам и нейтронам), из которых ядра составлены, но есть поля разных типов частиц, называемых кварками, из которых состоят протоны и нейтроны; есть и еще несколько полей, на которых мы сейчас останавливаться не будем. Уравнения полевой теории типа стандартной модели описывают поведение не частиц, а полей; частицы возникают как проявления этих полей. Обычная материя состоит из электронов, протонов и нейтронов просто по той причине, что все другие массивные частицы чудовищно нестабильны. Считается, что стандартная модель что?то объясняет не потому, что она представляет собой набор каких?то собранных в кучу обрывков, работающих по неизвестным причинам. На самом деле структура стандартной модели в значительной степени фиксируется начальным выбором набора полей, входящих в теорию, и общими принципами (вроде принципов теории относительности и квантовой механики), которые управляют взаимодействием этих полей.

Почему?  Почему мир состоит только из этих полей, а именно полей кварков, электронов, фотонов и т.п.? Почему их свойства такие, как предполагается в стандартной модели? И почему именно для этой материи природа подчиняется принципам теории относительности и квантовой механики? К сожалению, ответов на эти вопросы пока нет. Комментируя современное положение дел в физике, теоретик из Принстона Дэвид Гросс перечисляет открытые вопросы: «Теперь, когда мы понимаем, как все это работает, мы начинаем спрашивать себя, а почему существуют именно кварки и лептоны, почему структура материи повторяется в трех поколениях кварков и лептонов, почему все силы обязаны своим происхождением локальным калибровочным симметриям? Почему, почему, почему?»[21] (Используемые Гроссом понятия объясняются в следующих главах нашей книги.) Именно надежда когда?нибудь найти ответ на эти вопросы и делает занятие физикой элементарных частиц столь увлекательным.

Общеизвестно, что слово «почему» имеет весьма неопределенный смысл. Философ Эрнст Нагель приводит десять вариантов вопросов, в которых это слово употребляется в десяти разных смысловых значениях[22], например: «Почему лед плавает на воде?», «Почему Кассий организовал убийство Цезаря?» и «Почему у людей есть легкие?». На ум приходят и другие примеры, в которых слово «почему» употребляется в ином смысле, скажем, «Почему я родился?» В последнем примере использование слова «почему» похоже по смыслу на его использование во фразе «Почему лед плавает на воде?» и не предполагает какой?либо осознанной цели.

Но даже и в этом случае довольно сложно точно сказать, что же делает человек, пытаясь ответить на такой вопрос. К счастью, в этом нет необходимости. Научное объяснение есть некий способ поведения, доставляющий нам такое же удовольствие, как любовь или искусство. Наилучший способ понять, что же такое научное объяснение, это испытать особое чувство воодушевления, возникающее тогда, когда кто?нибудь (лучше всего, вы сами) добивается реального объяснения какого?то явления. Я совсем не имею в виду что можно заниматься научными объяснениями без всяких правил. Здесь существуют такие же ограничения, как в любви и в искусстве. Во всех трех случаях есть общепринятые истины, которые следует уважать, хотя, конечно, эти истины совершенно различны в науке, любви и искусстве. Я также не утверждаю, что совсем не интересно попытаться описать, как устроена наука, но думаю, что для работы в науке это не нужно, точно так же, как это не нужно в искусстве и в любви.

Как я уже упоминал, всякое научное объяснение имеет дело с дедукцией, выводом одной истины из другой. Но в объяснении заключено, с одной стороны, нечто большее, чем просто дедукция, а с другой стороны, нечто меньшее. Простой вывод одного утверждения из другого с помощью законов логики не обязательно содержит объяснение, и это ясно видно в тех случаях, когда оба утверждения могут быть выведены друг из друга. Эйнштейн пришел к заключению о существовании фотонов в 1905 г., исходя из успешной теории теплового излучения, предложенной пятью годами ранее Максом Планком; девятнадцать лет спустя Сатьендра Нат Бозе показал, что теорию Планка можно вывести из эйнштейновской теории фотонов. Объяснение, в противоположность выводу, дает поразительное ощущение направления . У нас возникает захватывающее чувство, что фотонная теория света более фундаментальна, чем любое другое утверждение, касающееся теплового излучения, и поэтому именно она является объяснением свойств такого излучения. Точно так же Ньютон вывел свои знаменитые законы, частично пользуясь ранее установленными законами Кеплера, описывающими движение планет Солнечной системы[23], но тем не менее мы утверждаем, что законы Ньютона объясняют законы Кеплера, но не наоборот.

Разговоры о более фундаментальных истинах очень нервируют философов. Можно сказать, что более фундаментальные истины это те, которые в определенном смысле более всеобъемлющи, но и здесь трудно дать точные формулировки. Однако ученые оказались бы в плохом положении, если бы ограничились использованием только тех понятий, которые уже получили удовлетворительное философское объяснение. Ни один работающий физик не сомневается, что законы Ньютона более фундаментальны, чем законы Кеплера, или что теория фотонов Эйнштейна более фундаментальна, чем теория теплового излучения Планка.

И все же научное объяснение может быть и чем?то меньшим, чем дедукция, так как мы можем утверждать, что какой?то факт объясняется некоторым принципом, хотя мы не в силах вывести этот факт из данного принципа. Используя законы квантовой механики, мы можем  вывести различные свойства простейших атомов и молекул и даже оценить уровни энергии сложных молекул, вроде молекул карбоната кальция в меле. Химик из Беркли Генри Шефер говорит, что «при разумном применении общепринятых методов теоретической физики ко множеству задач о поведении молекул, даже таких больших, как молекула нафталина, получаемые результаты можно рассматривать точно так же, как добытые в заслуживающем доверия эксперименте»[24]. И все же никто реально не смог решить уравнений квантовой механики и вывести детальный вид волновой функции или точное значение энергии такой действительно сложной молекулы, как молекула белка. Тем не менее мы ничуть не сомневаемся, что правила квантовой механики «объясняют» свойства таких молекул. Частично такая уверенность базируется на том, что с помощью квантовой механики можно рассчитать детальные свойства простейших систем, вроде молекул водорода, а частично – на том, что у нас есть математические правила, позволяющие вычислить все свойства любой молекулы с любой желаемой точностью, если только предоставить нам достаточно мощный компьютер и достаточное количество машинного времени.

Иногда мы вправе говорить, что можем что?то объяснить, даже если не уверены, что когда?либо сможем это вывести с помощью дедукции. До сих пор мы не знаем, как использовать стандартную модель элементарных частиц для вычисления детальных свойств атомных ядер, и у нас нет уверенности, что мы когда?нибудь узнаем, как сделать такие вычисления, даже имея в своем распоряжении компьютеры неограниченной мощности[25]. (Это связано с тем, что силы, действующие внутри ядер, слишком велики, чтобы можно было использовать определенные вычислительные приемы, хорошо работающие в случае атомов или молекул.) И все же мы не сомневаемся, что свойства атомных ядер таковы, каковы они есть, потому что нам известны принципы стандартной модели. В данном случае слова «потому что» не имеют ничего общего с нашей способностью реально вывести что?то, а отражают лишь наши взгляды на устройство природы.

Людвиг Витгенштейн, отрицавший саму возможность объяснения какого?либо факта с помощью любого другого факта, предупреждал, что «в основе всего современного взгляда на мир лежит иллюзорная точка зрения, что так называемые законы природы представляют собой объяснения естественных явлений»[26]. Подобные предупреждения мало меня трогают. Говорить физику, что законы природы не являются объяснениями природных явлений, это все равно, что внушать тигру, преследующему добычу, что нет разницы между мясом и травой. То, что мы, ученые, не знаем, как объяснить в приемлемой для философов форме, что же мы на самом деле делаем, занимаясь поисками научных объяснений, не означает, что то, что мы делаем, совершенно бесполезно. Конечно, мы можем пользоваться помощью философов?профессионалов, чтобы понять, что мы делаем, но с ней или без нее мы будем делать одно и то же.

Похожую цепочку «почему?» можно выстроить для любого физического свойства куска мела – для его хрупкости, плотности, сопротивления электрическому току. Но попробуем проникнуть в лабиринт объяснений через другой вход, рассматривая химию мела. Как говорил Хаксли, мел главным образом состоит из карбоната кальция. Хотя Хаксли этого прямо и не утверждал, он, вероятно, знал, что это химическое соединение состоит из элементов кальция, углерода и кислорода в совершенно определенных весовых пропорциях, соответственно, 40, 12 и 48 %.

Почему?  Почему мы обнаруживаем, что кальций, углерод и кислород образуют именно это химическое соединение только в таких пропорциях, и не существует других соединений, содержащих такие же элементы во многих других возможных пропорциях? Ответ был найден химиками XIX в. с помощью атомной теории, причем до того, как были получены прямые экспериментальные свидетельства существования атомов. Веса атомов кальция, углерода и кислорода относятся как 40 : 12 : 16, а молекула карбоната кальция состоит из одного атома кальция, одного атома углерода и трех  атомов кислорода, так что отношение весов этих элементов в карбонате кальция как раз равно 40 : 12 : 48.

Почему?  Почему атомы разных элементов имеют те значения веса, которые мы наблюдаем, и почему молекулы состоят из совершенно определенного количества атомов каждого сорта? Уже в XIX в. знали, что число атомов каждого сорта в молекулах, подобных карбонату кальция, определяется числом электрических зарядов, которым обмениваются друг с другом атомы в молекуле. В 1897 г. Дж.Дж. Томсон обнаружил, что носителями этих электрических зарядов являются отрицательно заряженные частицы, названные электронами. Эти частицы много легче, чем атомы в целом, и именно они перемещаются по проводам в обычных электрических цепях, когда течет ток. Элементы отличаются друг от друга числом электронов в атоме: один у водорода, шесть у углерода, восемь у кислорода, двадцать у кальция и т.д. Когда к атомам, из которых состоит мел, применили законы квантовой механики[27], то выяснилось, что атомы кальция и углерода охотно отдают, соответственно, два и четыре электрона, а атом кислорода легко подхватывает два электрона. Таким образом, три атома кислорода в каждой молекуле карбоната кальция могут подхватить шесть электронов, предоставляемых одним атомом кальция и одним атомом углерода; баланс сходится. Электрические силы, порождаемые этим обменом электронов, и удерживают молекулу от развала на составные части. А что можно сказать об атомных весах? После работ Резерфорда в 1911 г. мы знаем, что почти вся масса атома содержится в маленьком положительно заряженном ядре, вокруг которого обращаются электроны. После некоторых затруднений, к 1930 г. физики поняли, что атомное ядро состоит из двух сортов частиц, имеющих почти одинаковые массы, а именно из протонов с положительным электрическим зарядом, равным по величине отрицательному заряду электрона, и нейтронов, не имеющих заряда. Ядро атома водорода состоит из одного протона. Число протонов должно всегда равняться числу электронов[28], чтобы атом оставался нейтральным, а нейтроны нужны потому, что сильное притяжение между ними и протонами существенно для удержания ядра от развала. Нейтроны и протоны весят почти одинаково, а вес электронов много меньше, так что с хорошей точностью можно считать, что вес всего атома просто пропорционален полному числу протонов и нейтронов в его ядре: один (протон) у водорода, двенадцать у углерода, шестнадцать у кислорода и сорок у кальция. Эти цифры соответствуют атомным весам, которые были известны, но не имели объяснения во времена Хаксли.

Почему?  Почему существуют протон и нейтрон, заряженная и нейтральная частицы почти одинаковой массы и много тяжелее электрона? Почему они притягиваются друг к другу с такой силой, что им удается образовать атомные ядра, в сотни тысяч раз меньшие по размерам, чем сами атомы? Объяснение всему этому вновь содержится в сегодняшней стандартной модели элементарных частиц. Легчайшие кварки имеют названия u  и d  (от слов up  и down ), их заряды равны +2/3 и ?1/3 (в единицах, где заряд электрона принят равным ?1); протоны состоят из двух u ?кварков и одного d ?кварка и поэтому имеют заряд 2/3 + 2/3 ? 1/3 = 1; нейтроны состоят из одного u ?кварка и двух d ?кварков, так что их заряд равен 2/3 ? 1/3 ? 1/3 = 0. Массы протона и нейтрона почти равны, так как они порождаются главным образом большими силами, удерживающими кварки вместе, а эти силы одинаковы для u – и d ?кварков. Электрон много легче, так как он не испытывает воздействия этих сил. Все кварки и электроны являются сгустками энергии различных полей и их свойства вытекают из свойств соответствующих полей.

Итак, мы опять столкнулись со стандартной моделью. На самом деле любые  вопросы о физических или химических свойствах карбоната кальция сходятся через цепочку «почему?» к одной общей точке: к современной квантово?механической теории элементарных частиц, т.е. к стандартной модели. Но физика и химия – очень легкие предметы. Что, если взять что?нибудь позаковыристей, например биологию?

Наш кусочек мела не является идеальным кристаллом карбоната кальция, но в то же время это и не бесформенная каша из отдельных молекул, как в газе. Как объяснял Хаксли в своей лекции в Норвиче, мел состоит из скелетов крохотных живых существ, которые при жизни поглощали из воды древних морей соли кальция и углекислый газ и использовали эти химические вещества как сырье для строительства маленьких оболочек из карбоната кальция вокруг своих нежных тел. Не нужно особого воображения, чтобы понять, зачем им это потребовалось, – море не самое безопасное место для беззащитных комочков белка. Но это само по себе не объясняет, почему растения и животные развили в себе органы вроде оболочки из карбоната кальция, помогающие им выжить; нуждаться не значит иметь. Ключ к пониманию этого нашли Дарвин и Уоллес, для популяризации и защиты работ которых столь много сделал Хаксли. В живых существах происходят наследуемые изменения, иногда благоприятные, иногда не очень. Те организмы, которым посчастливилось претерпеть благоприятные изменения, имеют больше шансов выжить и передать эти полезные характеристики своему потомству. Но откуда берутся эти изменения и почему они наследуются? Ответ на эти вопросы был наконец дан в 1950?е гг. и свелся к раскрытию структуры очень большой молекулы ДНК, которая служит шаблоном для построения белков из аминокислот. Молекула ДНК образует двойную спираль, хранящую генетическую информацию, зашифрованную последовательностью химических структур вдоль каждой из нитей спирали. Генетическая информация передается в тот момент, когда двойная спираль расщепляется и каждая из двух ее нитей воспроизводит собственную копию; наследуемые изменения возникают тогда, когда по случайным причинам изменяются те химические структурные единицы, из которых построена нить спирали.

Раз мы спустились на уровень химии, то остальное уже довольно ясно. Конечно, ДНК слишком сложна, чтобы мы могли для объяснения ее структуры использовать уравнения квантовой механики. Но эта структура достаточно успешно объясняется обычными законами химии, и никто не сомневается, что будь у нас достаточно мощный компьютер, мы смогли бы в принципе объяснить все свойства ДНК, решив уравнения квантовой механики для электронов и ядер нескольких обычных химических элементов, свойства которых, в свою очередь, объясняются стандартной моделью. Итак, мы опять оказались в той же общей точке всех наших стрелок объяснений.

Я пока что не касался важного отличия биологии от физических наук, а именно присутствия элемента историзма. Если под «мелом» мы подразумеваем «вещество, из которого состоят белые скалы в Дувре» или «предмет в руках Хаксли», тогда утверждение, что мел состоит на 40 % из кальция, на 12 % из углерода и на 48 % из кислорода должно объясняться смесью универсальных и исторических причин, включающих события, происходившие в истории нашей планеты или в жизни Томаса Хаксли. Те утверждения, которые мы надеемся объяснить с помощью окончательных законов природы, относятся к типу универсальных. Одной из таких универсалий является утверждение, что (при достаточно низких температуре и давлении) существует химическое соединение, состоящее из кальция, углерода и кислорода точно в тех пропорциях, которые указаны выше. Мы полагаем, что такие утверждения верны везде во Вселенной и в любые моменты времени. Точно так же можно высказать универсальные утверждения о свойствах ДНК, однако существование живых существ на Земле, использующих ДНК для передачи случайных изменений от поколения к поколению, зависит от определенных исторических событий: есть такая планета как Земля; жизнь и обмен генетической информацией как?то начались; было достаточно времени на эволюцию.

Не только биология содержит элемент историзма. Это же верно и в отношении многих других наук, например геологии и астрономии. Возьмем еще раз наш кусочек мела и спросим, откуда на Земле взялись достаточные запасы кальция, углерода и кислорода, чтобы обеспечить сырье для постройки защитных панцирей, из которых потом образовался мел? Ответ прост – этих элементов полно во Вселенной. Но почему это так? Мы вновь должны апеллировать к смеси универсальных и исторических принципов. Мы знаем, как использовать стандартную модель элементарных частиц, чтобы проследить ход ядерных реакций в рамках общепринятой модели «Большого взрыва» Вселенной и вычислить, что материя, сформировавшаяся за первые несколько минут существования Вселенной, состояла на три четверти из водорода и на одну четверть из гелия и содержала лишь ничтожные следы других элементов, главным образом очень легких (например, лития). Это и было тем сырьем, из которого позднее в недрах звезд образовались более тяжелые элементы. Расчеты последующего хода ядерных реакций в звездах показывают, что больше всего возникло тех элементов, ядра атомов которых наиболее прочны. Среди таких элементов есть кальций, углерод и кислород. Звезды выбрасывают вещество в межзвездную среду за счет разного рода процессов, включающих звездный ветер и взрывы сверхновых. Звезды второго поколения, вроде Солнца и его планет, как раз и образовались из этого межзвездного вещества, обогащенного элементами, входящими в состав мела. Но такой сценарий все же зависит от предположения исторического характера, а именно что действительно произошел более или менее однородный Большой взрыв, в котором образовалось около десяти миллиардов фотонов на каждый кварк. Было предпринято множество попыток объяснить такое предположение в рамках возможных космологических теорий, однако сами эти теории базируются на других предположениях исторического характера.

Неясно, всегда ли сохранится различие между универсальными и историческими элементами в наших науках. Современная квантовая механика, так же как и механика Ньютона, ясно отличает условия, описывающие начальное состояние системы (не имеет значения, подразумевается ли вся Вселенная или только ее часть), от законов, управляющих последующей эволюцией этой системы. Однако возможно, что когда?нибудь начальные условия возникнут как часть законов природы. Простой пример того, как это может быть, дает так называемая теория стационарной Вселенной, предложенная в конце 1940?х гг. Германом Бонди и Томасом Голдом, а также (в несколько ином варианте) Фредом Хойлом. В этой модели все галактики разбегаются друг от друга (это иногда выражают несколько неточно словами, что Вселенная расширяется[29]), но несмотря на это происходит непрерывное рождение материи, которая заполняет расширяющиеся межгалактические пустоты с такой скоростью, что Вселенная поддерживается в неизменном состоянии и выглядит всегда одинаково. У нас нет приемлемой теории того, как могло бы происходить такое непрерывное рождение материи, но вполне возможно, что если бы подобная теория у нас была, мы смогли бы с ее помощью показать, что расширение Вселенной происходит с такой равновесной скоростью, что рождение материи в точности компенсирует расширение. Это напоминало бы экономическую теорию, согласно которой цены сами подстраиваются так, чтобы предложение уравновесило спрос. В такой теории стационарной Вселенной нет нужды в начальных условиях, так как нет самого начала, а вместо этого факт существования Вселенной можно вывести из условия, что она не меняется.

Первоначальная версия космологии стационарной Вселенной была достаточно надежно исключена благодаря разным астрономическим наблюдениям, главным среди которых было открытие в 1964 г. микроволнового излучения, как полагают, оставшегося от того времени, когда Вселенная была много плотнее и горячее. Может быть, теория стационарной Вселенной возродится при переходе к бо?льшим масштабам в какой?нибудь будущей космологической теории, которая будет рассматривать сегодняшнее расширение Вселенной всего лишь как флуктуацию в вечной, в среднем неизменной, но постоянно флуктуирующей Вселенной. Существуют и более тонкие возможности, что начальные условия когда?нибудь смогут быть выведены из окончательных законов. Джеймс Хартль и Стивен Хокинг предложили один такой вариант, в рамках которого слияние физики и истории объясняется применением законов квантовой механики ко Вселенной в целом. В наши дни квантовая космология вызывает большие споры среди ученых; концептуальные и математические проблемы очень сложны, и пока что не видно, что нам удалось продвинуться к каким?то определенным выводам.

В любом случае, если начальные условия возникновения Вселенной должны быть включены в законы природы или если их можно вывести из этих законов, все равно практически мы никогда не сможем исключить элементы историзма и случайности из таких наук, как биология, геология или астрономия. Даже в очень простой системе может возникнуть явление, называемое хаосом , препятствующее всем попыткам предсказать будущее этой системы. В хаотической системе почти одинаковые начальные условия через какое?то время приводят к совершенно разным результатам. Возможность возникновения хаоса в простых системах была известна еще в начале ХХ века; математик и физик Анри Пуанкаре показал, что хаос может развиться даже в такой простой системе, как центральная звезда и две ее планеты. Уже давно установлено, что темные щели в кольцах Сатурна возникли как раз в тех местах, откуда любая вращающаяся вокруг планеты частица выбрасывается благодаря своему хаотическому движению. Новым и удивительным в изучении хаоса стало не открытие, что этот хаос существует, а то, что определенные виды хаотических движений демонстрируют почти универсальные свойства, поддающиеся математическому анализу.

Существование хаотического движения не означает, что поведение системы вроде колец Сатурна не до конца определяется законами движения и тяготения и начальными условиями, а означает лишь то, что мы не можем рассчитать практически эволюцию некоторых явлений во времени (например, орбиты частиц в темных щелях колец Сатурна). Несколько более строго, существование хаоса в системе означает, что при любой точности, с которой мы задаем начальные условия, неизбежно наступит момент времени, после которого мы потеряем всякую возможность предсказать, как будет вести себя система. При этом все же остается верным утверждение, что в какой бы далекий момент времени в будущем мы ни захотели предсказать поведение физической системы, подчиняющейся законам Ньютона, существует определенная точность задания начальных условий, при которой мы способны это сделать. (Приведем такую аналогию: всякий автомобиль, едущий по дороге, когда?нибудь сожжет весь бензин в баке, сколько бы мы его туда ни залили, и все же, как бы далеко мы ни хотели попасть, всегда существует то достаточное количество бензина, которое позволит нам доехать до нужного места.) Иными словами, открытие явления хаоса не отвергает детерминизм доквантовой физики, но заставляет нас быть чуть более аккуратными в рассуждениях о том, что мы понимаем под этим словом. В квантовой механике нет детерминизма в смысле механики Ньютона; соотношение неопределенностей Гейзенберга говорит нам, что нельзя одновременно точно измерить положение и скорость частицы, и даже если мы произведем все возможные в один и тот же момент времени измерения, мы можем только предсказать вероятности результатов этих измерений в любой последующий момент времени. Все же мы увидим ниже, что даже в квантовой механике в определенном смысле поведение любой физической системы полностью определяется начальными условиями и законами природы.

Конечно, каким бы ни был этот детерминизм, он мало помогает, когда мы сталкиваемся с реальными непростыми системами вроде биржи или жизни на Земле. Вторжение исторических случайностей постоянно ограничивает объем того, что мы когда?либо можем надеяться объяснить. Всякое объяснение нынешних форм жизни на Земле не может не учитывать вымирание динозавров шестьдесят пять миллионов лет тому назад, которое в наши дни объясняется столкновением Земли с кометой. Но никто никогда не сможет объяснить, почему комета столкнулась с Землей именно тогда. Самые смелые надежды ученых заключаются в том, что мы сможем протянуть цепочку объяснений всех явлений природы до окончательных законов и исторических случайностей.

Вторжение в науку исторических случайностей означает также, что нам следует быть очень внимательными в отношении того, какого же типа объяснения мы хотим получить от окончательных законов. Например, когда Ньютон впервые сформулировал свои законы движения и тяготения, послышались возражения, что эти законы не объясняют одну из главных особенностей Солнечной системы, а именно что все планеты вращаются вокруг Солнца в одну сторону. Сейчас мы понимаем, что это явление связано с историей. То, как планеты вращаются вокруг Солнца, есть следствие того, как Солнечная система сконденсировалась из вращающегося газового диска. Мы и не должны ожидать, что можно вывести это только из законов движения и тяготения. Разделение законов и исторических событий – деликатное дело, и мы учимся этому все время.

Вполне возможно, что те явления, которые мы рассматриваем сейчас как произвольные начальные условия, в конце концов смогут быть выведены из универсальных законов, но и наоборот, вполне возможно, что принципы, которые мы сейчас  считаем универсальными законами природы, в конце концов окажутся историческими случайностями. В последнее время ряд физиков?теоретиков забавляется идеей, что тот объект, который мы обычно называем Вселенной, а именно расширяющийся рой галактик, простирающийся во всех направлениях по крайней мере на десятки миллиардов световых лет, есть на самом деле «субвселенная», маленькая часть значительно большей «Мегавселенной», состоящей из множества таких частей, причем в каждой из них те величины, которые мы называем мировыми константами (электрический заряд электрона, отношение масс элементарных частиц и т.п.), могут иметь разные значения. Возможно даже, что те утверждения, которые мы называем законами природы, меняются при переходе от одной субвселенной к другой. В этом случае те объяснения значений констант и законов, которые найдены нами, могут включать неустранимый элемент историзма, а именно то, что по случайности мы находимся в определенной субвселенной, которую и населяем. Даже если в этих идеях окажется что?то разумное, я все же не думаю, что нам надо будет расстаться с мечтами об открытии окончательных законов природы; эти законы могут оказаться мегазаконами, определяющими вероятности нахождения в субвселенных разного типа. Сидни Коулмен и другие уже храбро попытались вычислить эти вероятности, применив законы квантовой механики ко всей Мегавселенной. Я хочу подчеркнуть, что все подобные идеи очень спекулятивны, не до конца математически сформулированы и пока что не имеют никакой экспериментальной поддержки.

До сих пор я обсуждал две проблемы, возникающие при обсуждении цепочки объяснений, ведущих к окончательным законам: вторжение исторических случайностей и сложность, не дающую нам возможности что?то реально объяснить, даже если мы рассматриваем только универсалии, свободные от элементов историзма. Но есть еще одна требующая обсуждения проблема, связанная со словом «возникновение». Когда мы рассматриваем явления природы на все более сложных уровнях, мы обнаруживаем возникновение явлений, не имеющих аналогов на более простых уровнях, и уж тем более на уровне элементарных частиц. Например, нет ничего похожего на разум на уровне отдельных живых клеток и ничего похожего на жизнь на уровне атомов и молекул. Идея возникновения была хорошо схвачена физиком Филиппом Андерсоном в названии его статьи в 1972 г.: «Чем больше, тем разнообразнее» [30]. Внезапное возникновение новых явлений на высоком уровне сложности наиболее очевидно в биологии и науках о поведении, но следует подчеркнуть, что такое возникновение не есть специфика жизни или социального поведения; такое случается и в самой физике.

В физике исторически наиболее важным примером возникновения новых качеств является термодинамика, наука о теплоте. В первоначальной формулировке, данной в XIX в. Карно, Клаузиусом и другими, термодинамика выглядела как автономная наука, не выводимая из механики частиц и сил, а построенная на новых понятиях температуры и энтропии, не имеющих аналогов в механике. Только первый закон термодинамики, закон сохранения энергии, перекидывал мостик между механикой и термодинамикой. Центральным принципом термодинамики был второй закон, согласно которому (в одной из формулировок) физические системы обладают не только энергией и температурой, но и определенной величиной, называемой энтропией[31], которая всегда растет со временем в любой замкнутой системе, достигая максимума, когда система приходит в состояние равновесия[32]. Именно этот принцип запрещает Тихому океану передать такое количество тепловой энергии Атлантическому, чтобы Тихий океан замерз, а Атлантический закипел; подобный катаклизм не нарушил бы закона сохранения энергии, но он запрещен, так как уменьшил бы энтропию.

Физики XIX в. воспринимали второй закон термодинамики как аксиому, сформулированную на основании опыта и столь же фундаментальную, как и любой другой закон природы. В те времена это казалось разумным. Термодинамика, похоже, успешно применялась в самых разнообразных ситуациях, начиная от поведения пара (та задача, которая породила саму термодинамику) и кончая замерзанием, кипением и химическими реакциями. (В наши дни мы могли бы добавить более экзотические примеры; астрономы обнаружили, что мириады звезд в шаровых скоплениях в нашей и других галактиках ведут себя как газы при определенной температуре, а в работах Бекенштейна и Хокинга было теоретически показано, что черные дыры обладают энтропией, пропорциональной площади поверхности дыры.) Если термодинамика столь универсальна, то как можно ее логически связать с физикой определенных типов частиц и сил?

Затем, во второй половине XIX в., в работах нового поколения физиков?теоретиков (включая Джеймса Клерка Максвелла в Шотландии, Людвига Больцмана в Германии и Джосайи Уилларда Гиббса в Америке) было показано, что принципы термодинамики можно на самом деле математически вывести, анализируя вероятности различных конфигураций систем определенного типа, в которых энергия распределяется среди очень большого числа подсистем. Так происходит, например, в газе, энергия которого распределяется среди образующих газ молекул. (Эрнст Нагель приводит этот пример как образец сведения одной теории к другой[33]) В рамках такой статистической механики тепловая энергия газа является просто кинетической энергией его частиц; энтропия есть мера беспорядка в системе; второй закон термодинамики выражает тенденцию изолированной системы становиться все более неупорядоченной. Переток теплоты из всех океанов в Атлантический привел бы к увеличению порядка, и именно поэтому так не происходит.

Какое?то время, в период между 1880?м и 1890?м гг., происходила настоящая битва между теми, кто поддерживал новую статистическую механику, и теми, кто, как Макс Планк и химик Вильгельм Оствальд, продолжали утверждать логическую независимость термодинамики[34]. Эрнст Цермело пошел еще дальше и пытался доказать, что, поскольку в рамках статистической механики уменьшение энтропии маловероятно, но все же возможно, то предположения о молекулах, на которых построена статистическая механика, не могут быть верными. Эта битва была в конце концов выиграна последователями статистической механики, после того как в начале ХХ в. всеми была признана реальность атомов и молекул. Тем не менее, даже получив объяснение в терминах частиц и сил, термодинамика продолжает иметь дело с такими понятиями, как температура и энтропия, теряющими всякий смысл на уровне отдельных частиц.

Термодинамика это скорее способ рассуждений, а не часть универсального физического закона; когда мы ее применяем, мы всегда можем уверенно пользоваться одними и теми же принципами. Но объяснение того, почему термодинамика применима к любой конкретной системе[35], принимает форму вывода, использующего методы статистической механики и отталкивающегося от деталей устройства системы, а это неизбежно опять приводит нас на уровень элементарных частиц. Если воспользоваться картиной стрелок объяснений, которую я уже применял выше, то термодинамику можно рассматривать как определенную систему таких стрелок, снова и снова возникающих в очень разных физических обстоятельствах, но где бы они не возникли, всегда с помощью методов статистической механики можно проследить, как они сходятся к более глубоким законам и в конце концов к принципам физики элементарных частиц. Как показывает этот пример, применимость научной теории для выяснения очень широкого круга явлений совершенно не означает автономность ее от более глубоких физических законов.

То же утверждение верно и в других областях физики, например в связанных между собой явлениях хаоса и турбулентности. Физики, работающие над этими проблемами, обнаружили, что снова и снова, в самых разных ситуациях, повторяются одни и те же типы поведения системы; например, считается, что в турбулентном потоке жидкости любого сорта распределение энергии по отдельным завихрениям разного размера универсально, идет ли речь о турбулентности приливной волны на гавайском пляже или о турбулентности, возникшей в межзвездном газе в результате пролета звезды. Однако не все потоки жидкости турбулентны, и даже если турбулентность возникла, она не всегда проявляет эти «универсальные» свойства. Каковы бы ни были математические соображения, приводящие к выводу об универсальных свойствах турбулентности, нам все равно надлежит объяснить, почему  эти соображения применимы к любому конкретному турбулентному потоку, а этот вопрос неизбежно требует ответа, включающего как случайности (скорость приливной волны или форма трубы, по которой течет жидкость), так и универсальные закономерности (свойства воды и законы движения жидкости), которые в свою очередь должны быть объяснены с помощью более глубоких законов.

Аналогичные рассуждения применимы и к биологии. В этом случае бо?льшая часть того, что мы наблюдаем, зависит от исторических случайностей, но есть несколько приближенно универсальных закономерностей, вроде правила биологии популяций, утверждающего, что особи мужского и женского рода имеют тенденцию рождаться в равных количествах. (В 1930 г. генетик Рональд Фишер объяснил, что если только в сообществе возникает тенденция производить, скажем, больше мужских, чем женских особей, то каждый ген, ответственный за то, что особь чаще рождает самок, а не самцов, начинает распространяться по всей популяции, так как несущие этот ген женские потомки встречают меньше конкуренции при поисках пары.) Подобные правила применимы к широкому кругу популяций. Можно думать, что они верны даже для жизни на других планетах, если только она воспроизводится половым путем. Аргументы, приводящие к этим правилам, одни и те же, идет ли речь о людях, птицах или инопланетянах. Однако рассуждения всегда покоятся на определенных предположениях о рассматриваемых организмах, и если мы зададимся вопросом, почему эти предположения следует считать правильными, мы должны будем искать ответ частично в исторических случайностях, а частично в универсальных закономерностях, вроде структуры ДНК (или того, что ее заменяет на других планетах), что в свою очередь находит объяснение в физике и химии, а следовательно в стандартной модели элементарных частиц.

В этом месте мои рассуждения могут показаться несколько туманными, так как в реальной работе в области термодинамики, динамики жидкостей или биологии популяций ученые используют языки, специфичные для каждой конкретной области исследований, и говорят об энтропии, вихрях или стратегии репродукции, а не об элементарных частицах. Это происходит не только потому, что мы реально не можем использовать наши исходные принципы для расчета сложных явлений; это есть еще и отражение того, какого типа вопросы мы хотим задать об этих явлениях. Даже если бы у нас был чудовищных размеров компьютер, который мог бы проследить историю каждой элементарной частицы в приливной волне или в теле плодовой мушки, все горы компьютерных выдач вряд ли пригодились бы тому, кто хотел всего лишь узнать, есть ли завихрения в потоке воды или жива ли мушка.

Нет причин предполагать, что сближение научных объяснений должно приводить к сближению научных методов. Термодинамика, хаос и биология популяций будут каждая использовать свой собственный язык и развиваться по своим собственным правилам, что бы мы не узнали об элементарных частицах. Как говорит химик Роальд Хоффман, «большая часть полезных химических представлений… неточна. Но если свести их к физике, они вообще исчезают»[36]. Атакуя тех, кто пытается свести химию к физике, Ганс Примас перечисляет ряд полезных понятий химии, для которых велика опасность исчезнуть при такой редукции: валентность, структура связей, локализованные орбитали, ароматичность, кислотность, цвет, запах, растворимость в воде[37]. Я не вижу причин, почему химики должны перестать употреблять эти понятия, если они находят их полезными или интересными. Но тот факт, что они продолжают это делать, не должен вызывать сомнений в другом факте, что все эти понятия химии имеют тот смысл, который в них вкладывается, благодаря лежащим в их основе законам квантовой механики электронов, протонов и нейтронов. Как подчеркивал Лайнус Полинг, «нет ни одного раздела химии, который не зависел бы в своих фундаментальных основах от квантовых принципов»[38].

Из всех разделов знания, которые мы пытаемся связать с принципами физики с помощью стрелок объяснений, наибольшую трудность вызывает проблема сознания. Мы ведь сразу постигаем наши собственные мысли, без всякого вмешательства чувств, так как же можно рассматривать сознание в рамках физики и химии? Физик Брайан Пиппард, занимавший кресло Максвелла в качестве Кавендишевского профессора в Кембриджском университете, выразил это так: «Вот уж что действительно немыслимо, так это то, что физик?теоретик, даже обладая компьютером неограниченной мощности, должен вывести из законов физики, будто какая?то сложная структура уверена в своем существовании»[39].

Должен сознаться, что эти вопросы для меня ужасно трудны и я не обладаю необходимой специальной подготовкой. Все же я не согласен с Пиппардом и многими другими учеными, занимающими те же позиции. Ясно, что здесь мы имеем дело с тем, что литературовед назвал бы предметным коррелятом к сознанию. Я наблюдаю, что физические и химические изменения у меня в мозгу и в теле соотносятся (и как причина, и как следствие) с изменениями в моих сознательных мыслях. Я смеюсь, когда чем?то обрадован; мой мозг проявляет разную электрическую активность, когда я сплю и когда бодрствую; сильные эмоции управляются количеством гормонов в моей крови; кроме того, я иногда произношу вслух свои мысли. Все это еще не сознание в чистом виде; я никогда не смогу выразить с помощью смеха, волн мозговой активности, гормонов или слов, что значит чувствовать, что ты грустен или весел. Но оставим на минутку сознание в стороне. Разумно считать, что эти предметные корреляты к сознанию могут изучаться научными методами и в конечном счете могут быть объяснены через физику или химию мозга и тела. (Не надо понимать слово «объяснены» так, что мы можем предсказать все или почти все. Но мы способны понять, почему смех, мозговые волны и гормоны производят тот или иной эффект. Точно так же мы не можем предсказать погоду в следующем месяце, хотя и понимаем, как и чем эта погода определяется.)

В родном университете Пиппарда, Кембридже, есть группа биологов, возглавляемых Сиднеем Бреннером, которая полностью установила схему нервной системы маленького червя из семейства нематод C. elegans , так что теперь ученые в некотором смысле знают ответ на любой вопрос о том, почему этот червь ведет себя так, а не иначе. (Что до сих пор не удается построить, так это основанную на схеме программу, которая имитирует наблюдаемое поведение червя.) Конечно, червь это не человек. Но между ними есть непрерывный ряд животных со все усложняющейся нервной системой, всякие там жалящие насекомые, рыбы, мыши и человекообразные обезьяны. Где же провести черту?[40]

Предположим все же, что мы придем к пониманию предметных коррелятов к сознанию в терминах физики (включая сюда и химию) и поймем также путь их развития к теперешнему состоянию. Не так уж бессмысленно надеяться, что когда предметные корреляты к сознанию будут поняты, то где?то в наших объяснениях можно будет выделить нечто, какую?то физическую систему для переработки информации, которая будет соответствовать нашим представлениям о сознании, будет тем, что Гильберт Райль назвал «духом в машине»[41]. Может быть, это и не будет полным объяснением сознания, но чем?то очень близким.

Нет никаких гарантий, что прогресс в других областях науки будет обязательно сопровождаться чем?то новым в области физики элементарных частиц. Но (я повторяю это не в последний раз) меня заботит здесь не столько то, чем занимаются ученые, поскольку это отражает как ограниченные возможности, так и интересы людей, сколько логический порядок, встроенный в саму природу. Именно в этом смысле можно говорить, что разделы физики вроде термодинамики и другие науки вроде химии и биологии основаны на более глубоких законах, в частности на законах физики элементарных частиц.

Говоря здесь о логическом порядке в природе, я молчаливо принял, как сказали бы историки или философы, позицию «реалиста», причем не в использующемся каждодневно смысле трезвомыслящего, лишенного иллюзий человека, а в значительно более древнем смысле человека, верящего в реальность абстрактных идей. Средневековый реалист верил в реальность универсалий, например платоновских форм, в противоположность номиналистам, вроде Уильяма Оккама, который объявлял их не более чем простыми именами. (Мое использование слова «реалист» порадовало бы одного из моих любимых авторов, викторианца Джорджа Гиссинга, который хотел, чтобы «слова реализм и реалист никогда более не употреблялись, дабы сохранить их истинный смысл в писаниях философов?схоластов»[42].) Несомненно, я не собираюсь здесь вступать в споры на стороне Платона. Я хочу лишь подчеркнуть здесь реальность законов природы, в противоположность современным позитивистам, считающим реальностью только то, что можно измерить.

Когда мы говорим, что вещь реальна, мы просто выражаем по отношению к ней определенную степень уважения. Мы полагаем, что к этой вещи надо относиться серьезно, так как она может воздействовать на нас не вполне контролируемым образом, и узнать о ней что?то новое можно, только попытавшись выйти за рамки нашего мысленного представления об этой вещи. Это, например, верно по отношению к стулу, на котором я сижу (любимый пример философов), и свидетельствует не столько о реальности самого стула, сколько о том, что мы имеем в виду, когда говорим, что стул реален. Как физик, я воспринимаю научные объяснения и законы как вещи, которые таковы, каковы они есть, и которые нельзя выдумать, поэтому мое отношение к этим законам не так уж отличается от моего отношения к стулу. Поэтому я жалую законам природы (по отношению к которым сегодняшние законы – всего лишь приближения) честь быть реальными. Такая точка зрения только укрепляется, когда оказывается, что некоторые законы природы совсем не такие, как мы о них думали. Наши ощущения при этом близки к тем, которые мы испытываем, когда, пытаясь сесть, обнаруживаем, что под нами нет стула. Правда, я должен признать, что моя готовность присвоить титул «реальный» законам природы несколько напоминает готовность Ллойд Джорджа раздавать направо и налево аристократические титулы; это показывает, как мало значения я этому придаю.

Дискуссия о реальности законов природы может стать менее академичной, если нам удастся вступить в контакт с другими разумными существами с далеких планет, которые также ищут научные объяснения явлениям природы. Окажется ли, что они открыли те же самые законы? Ясно, что любые открытые ими законы были бы сформулированы на совершенно незнакомом языке и в непривычных обозначениях, но мы все же смогли бы спросить, есть ли хоть какое?нибудь соответствие между их законами и нашими. Если бы это оказалось так, было бы трудно отрицать объективный характер этих законов.

Конечно, мы не знаем, что было бы на самом деле, но здесь на Земле, пусть в малом масштабе, мы уже получили ответ на аналогичный вопрос. Так случилось, что современная физическая наука родилась в Европе в конце XVI в. Те, кто сомневаются в реальности законов природы, могли бы полагать, что поскольку в других частях мира сохранялись свои языки и религии, то там должны были сохраняться и свои научные традиции, которые в конце концов привели бы к установлению физических законов, полностью отличающихся от европейских. Конечно, ничего подобного не произошло: физика современной Японии и Индии ничем не отличается от физики Европы и Америки. Я признаю, что этот аргумент недостаточно убедителен, так как весь мир находился под глубоким влиянием других проявлений западной цивилизации, от военной организации до синих джинсов. И все же участие в дискуссии по квантовой теории поля или по слабым взаимодействиям в какой?нибудь аудитории в Цукубе или Бомбее придает мне глубокую уверенность, что законы физики существуют сами по себе.

Наше открытие связанной сходящейся структуры научных объяснений приводит к глубоким последствиям, и не только для ученых. Наряду с главным потоком научного познания существуют изолированные маленькие заводи, в которых плещется то, что я (выбирая самый нейтральный термин) назвал бы паранаука: астрология, гадание, передача мыслей, ясновидение, телекинез, креационизм и множество их разновидностей. Если бы удалось показать, что хоть в одном из этих понятий есть какая?то истина, это было бы открытием века, значительно более важным и заметным, чем все то, что происходит сегодня в нормальной физике. Что, спрашивается, должен думать мыслящий гражданин, услышав от какого?нибудь профессора, от кинозвезды или прочтя в газете, что есть свидетельства справедливости одной из этих паранаук?

Общепринятый ответ таков: это свидетельство должно быть проверено непредвзято и без теоретических предубеждений. Хотя подобная точка зрения широко распространена, я не думаю, что в ней много смысла. Однажды в телеинтервью[43] я сказал, что верить в астрологию означает повернуться спиной ко всей современной науке. Через какое?то время я получил вежливое письмо от бывшего химика и металлурга из Нью?Джерси, в котором он отчитал меня за то, что я лично не изучал свидетельства в пользу астрологии. Аналогично, когда Филипп Андерсон неодобрительно отозвался[44] недавно о вере в телекинез и ясновидение, его упрекнул коллега из Принстона, Роберт Ян, экспериментирующий с тем, что сам он называет «связанными с сознанием аномальными явлениями»[45]. Ян пожаловался, что «хотя его (Андерсона) кабинет находится всего в нескольких сотнях метров от моего, он не посетил нашу лабораторию, не обсудил непосредственно со мной ни одно из своих сомнений, и, по?видимому, даже не прочел внимательно ни одной специальной книжки»[46].

И Ян, и химик из Нью?Джерси, и все, кто с ними согласны, не учитывают того, что называется ощущением взаимосвязанности научного знания. Конечно, мы не понимаем всего, но все же понимаем достаточно, чтобы утверждать, что в нашем мире нет места телекинезу или астрологии. Каким, спрашивается, должен быть физический сигнал, исходящий из нашего мозга, чтобы он мог двигать удаленные предметы, не оказывая при этом никакого влияния ни на какие научные приборы? Защитники астрологии иногда указывают на несомненное влияние Луны и Солнца на высоту приливов, однако действие гравитационных полей других планет слишком мало, чтобы ощутимо повлиять на земные океаны, а уж тем более на такое маленькое тело, как человек[47]. (Я не стану развивать эту мысль, но аналогичные соображения применимы к любой попытке объяснить ясновидение, гадание или другие паранауки с помощью стандартной науки.) Во всяком случае корреляции, предсказываемые астрологами, совсем не те, которые могли бы возникнуть как результат действия очень слабых гравитационных полей; астрологи ведь не просто заявляют, что определенное расположение планет влияет на жизнь здесь, на Земле, они утверждают, что это влияние меняется для каждого человека в зависимости от дня и часа его рождения! На самом деле я не думаю, что большинство верящих в астрологию людей считают, будто ее предсказания выполняются из?за гравитации или любой другой причины, находящей объяснение в рамках физики; полагаю, они верят, что астрология – автономная наука, со своими фундаментальными законами, не выводимыми из законов физики или чего?нибудь еще. Одно из величайших достижений, связанных с открытием структуры научного объяснения, это демонстрация того, что не существует никаких автономных наук.

Но все же разве мы не должны проверить выводы астрологии, телекинеза и тому подобных вещей, чтобы быть уверенными, что там ничего нет? Я ничего не имею против любого человека, проверяющего все, что он хочет, но хочу объяснить, почему я сам не собираюсь этого делать и не рекомендую это занятие другим. В каждый момент времени перед нами имеется богатый выбор новых идей, которые можно развивать: речь идет не только об астрологии и тому подобном, но и о многих идеях, находящихся значительно ближе к основному руслу научного потока, а также тех, которые прямо попадают в рамки современных научных исследований. Было бы неправильно утверждать, что все  эти идеи должны быть тщательно проверены, на это просто не хватило бы времени. Каждую неделю я получаю по почте около пятидесяти препринтов статей по физике элементарных частиц и астрофизике, помимо нескольких статей и писем по всем видам паранаук. Даже если я заброшу все остальное в моей жизни, я не смогу внимательно разобраться во всех этих идеях. Так что же я должен делать? С подобными проблемами сталкиваются не только ученые, но каждый из нас. У нас просто нет другой альтернативы, кроме как решить, взвесив все как можно лучше, что некоторые из этих идей (возможно, большинство) не заслуживают внимания. Величайшим подспорьем при вынесении этого суждения является наше понимание структуры научного объяснения.

Когда испанские завоеватели в Мексике начали в XVI в. поход на север в страну, называвшуюся Техас, их толкали вперед слухи о городах из золота, семи городах Сиболы. В те времена это не казалось невероятным. В Техасе побывало несколько европейцев и, по рассказам каждого из них, там было полно чудес. Но предположим, что в наши дни кто?нибудь заявит, что в современном Техасе находятся семь золотых городов. Стали бы вы непредвзято рекомендовать снарядить экспедицию, чтобы обыскать каждый уголок штата между Красной рекой и Рио Гранде в поисках этих городов? Я думаю, вы все же решили бы, что мы уже достаточно знаем о Техасе, что бо?льшая часть его территории используется и заселена, так что просто бессмысленно пытаться искать сказочные золотые города. Точно так же открытие связной сходящейся структуры научных объяснений сослужило большую службу, научив нас, что в природе нет места астрологии, телекинезу, креационизму и другим предрассудкам.

Глава III. Похвала редукционизму

 

Дорогая, ты и я знаем, почему Летом небо голубое И птички в ветвях Поют свои песни.

Мередит Вильсон. Ты и я

Если вы начнете спрашивать всех окружающих, почему вещи такие, а не иные, и получите в ответ объяснение, основанное на каких?то научных принципах, а затем станете снова спрашивать, почему эти принципы верны, и наконец, как плохо воспитанный ребенок, будете после любого ответа спрашивать: «Почему? Почему? Почему?», то рано или поздно кто?нибудь обзовет вас редукционистом. Под этим словом разные люди понимают разные вещи, но думаю, что в любых рассуждениях о редукционизме есть нечто общее, а именно идея иерархии, когда некоторые истины считаются менее фундаментальными, чем другие, и первые могут быть сведены ко вторым, например химия – к физике. Редукционизм давно превратился в стандартное пугало в научной политике. Так, Научный совет Канады атаковал недавно Координационный комитет по сельскому хозяйству этой страны за то, что в нем засели редукционисты[48]. (По?видимому, Научный совет имел в виду то, что комитет уделяет слишком много внимания химии и биологии растений.) Физики, занимающиеся элементарными частицами, особенно часто подвергаются обвинениям в редукционизме, так что частой причиной их испорченных отношений с другими учеными является неприятие последними этой идеи.

Взгляды оппонентов редукционизма образуют широкий идеологический спектр. На его наиболее разумном крае находятся те, кто отрицает самые наивные формы редукционизма. Я отношусь к таким взглядам с уважением. Сам я считаю себя редукционистом, но все же не думаю, что единственными интересными и глубокими проблемами в науке или даже в физике являются проблемы физики элементарных частиц. Я совершенно не думаю, что химики должны бросить все, что они делают, и вместо этого заняться решением уравнений квантовой механики для разных молекул. Я также не считаю, что биологи должны перестать размышлять о растениях и животных как целостных организмах и думать только о клетках и ДНК. С моей точки зрения, редукционизм это не руководство для программы исследований, а способ отношения к самой природе. Я имею в виду лишь то ощущение, что наши научные принципы являются следствиями более глубоких научных принципов[49] (и, возможно, исторических случайностей) и что все эти принципы можно свести к простому набору связанных между собой законов. На данном этапе истории науки ученые полагают, что наилучший способ приблизиться к этим законам заключается в изучении физики элементарных частиц, хотя это и случайный аспект редукционизма, который может измениться со временем.

На другом краю спектра находятся те оппоненты редукционизма, которых приводят в ужас унылые перспективы развития современной науки. Чем в большей степени они и мир, в котором они живут, могут быть сведены к частицам, полям и их взаимодействиям, тем больше они чувствуют себя униженными этим знанием. Герой повести Достоевского «Записки из подполья» представляет себе ученого, говорящего ему: «…природа нас не спрашивается; нужно принимать ее так, как она есть, а не так, как мы фантазируем, и если мы действительно стремимся к табличке и к календарю, ну, и… ну хоть бы даже и к реторте, то что же делать, надо принять и реторту!» и отвечает: «Эх, господа, какая уж тут своя воля будет, когда дело доходит до таблички и до арифметики, когда будет одно только дважды два четыре в ходу? Дважды два и без моей воли четыре будет. Такая ли своя воля бывает!»[50] Уж совсем экстремистами являются те, кто помешался на холизме[51], так что их реакция на редукционизм принимает форму веры в психическую энергию, жизненные силы и т.п. явления, не имеющие объяснения с помощью обычных законов неодушевленной природы. Я не буду даже пытаться отвечать этим критикам с помощью занудных разговоров о красотах современной науки. Редукционистское мировоззрение обязательно предусматривает  холодный рассудок и беспристрастность. Это мировоззрение надо принимать таким, каким оно есть, и не потому, что оно нам нравится, а потому, что так устроен мир.

В средней части спектра антиредукционистов находится группа более влиятельных и менее бескорыстных людей. Это те ученые, которые приходят в ярость, когда слышат, что их разделы науки основываются на более глубоких законах физики элементарных частиц.

В течение ряда лет я ожесточенно спорил по поводу редукционизма со своим хорошим другом, биологом?эволюционистом Эрнстом Майром. Среди прочих заслуг этого ученого – лучшее из имеющихся определений понятия биологических видов. Споры начались, когда в статье, написанной в 1985 г.[52], он набросился на одну фразу из моей статьи в журнале Scientific American  за 1974 г.[53], посвященной совершенно другим проблемам. Я заметил в этой статье, что в физике мы надеемся открыть несколько простых общих законов, которые объяснили бы, почему мир такой, какой он есть, и что сейчас при описании элементарных частиц и их взаимодействий мы ближе всего подошли к единому взгляду на природу. В своей статье Майр назвал это «чудовищным примером способа мышления физиков» и обозвал меня «бескомпромиссным редукционистом». Я возразил ему в Nature [54], что я не бескомпромиссный редукционист, а напротив, редукционист, готовый к компромиссам.

Затем последовало разгромное письмо[55], в котором Майр привел классификацию разных типов редукционизма и идентифицировал мою личную версию этой ереси. Я не понимаю этой классификации; все ее категории звучат для меня одинаково, причем ни одна не соответствует моим собственным взглядам. В свою очередь, Майр (как мне кажется) не понимает того различия, которое я провожу между редукционизмом как общим требованием, необходимым для прогресса в науке, что не совпадает с моими взглядами, и редукционизмом как утверждением порядка в природе, с чем я безусловно согласен[56]. Мы с Майром остаемся в хороших отношениях, но прекратили попытки обратить другого в свою веру.

С точки зрения национальных планов научных исследований наиболее серьезной является оппозиция редукционизму в рядах самих физиков. Редукционистские притязания физики элементарных частиц глубоко раздражают некоторых ученых, работающих в других областях, например в физике твердого тела, и чувствующих себя участниками соревнования с физиками, занимающимися частицами, за финансирование исследований. Все это в особенно болезненной форме проявилось тогда, когда возникло предложение истратить миллиарды долларов на ускоритель частиц ССК. В 1987 г. руководитель отдела по связям с общественностью Американского физического общества заявил, что проект Суперколлайдера «возможно, сеет самые большие раздоры, которые когда?либо сотрясали физическое сообщество»[57]. За то время, что я входил в состав комиссии наблюдателей за проектом ССК, все члены комиссии, включая меня, множество раз публично разъясняли цели проекта. Один из членов комиссии все время повторял, что мы не должны создавать впечатления, будто думаем что физика элементарных частиц более фундаментальна, чем другие разделы физики, так как это будет только бесить наших коллег. Причина, почему мы давали повод думать, что физика элементарных частиц более фундаментальна, чем другие разделы физики, заключается просто в том, что так оно и есть. Я не знаю, каким образом можно обосновывать расходы на физику частиц, не будучи совершенно искренним. Но утверждение, что физика элементарных частиц более фундаментальна, не означает, что она математически более глубока, более необходима для прогресса в других областях и т.п., а означает лишь, что она ближе всего к точке схождения всех наших стрелок объяснений.

Ученых, огорченных претензиями физики частиц, возглавляет Филипп Андерсон из Принстона, физик?теоретик, высказавший много глубоких идей, лежащих в основе современной физики твердого тела (сюда относятся физика полупроводников, сверхпроводников и многое другое). Андерсон выступил против проекта ССК на тех же слушаниях в комитете конгресса в 1987 г., что и я. Андерсон считал (и я с ним согласен), что исследования в области физики твердого тела недостаточно финансируются Национальным научным фондом. Он высказал мысль (с которой я также согласен), что многие студенты старших курсов соблазняются призрачным блеском физики элементарных частиц, в то время как они могли бы сделать значительно более успешную научную карьеру, занимаясь физикой твердого тела или связанными с ней проблемами. Но далее Андерсон заявил, что «…они [результаты физики частиц] ни в каком смысле не более фундаментальны, чем то, что сделал Алан Тьюринг для создания компьютеров, или Фрэнсис Крик и Джеймс Уотсон для открытия секрета жизни»[58]. Ни в каком смысле не более фундаментальны? Это?то и есть главный пункт наших с Андерсоном разногласий. Я просматривал работы Тьюринга и других основоположников науки о компьютерах, и все эти работы показались мне принадлежащими больше математике или технологии, а не обычным разделам естественных наук. Математика сама по себе никогда ничего не объясняет – это лишь средство, с помощью которого мы используем совокупность одних фактов для объяснения других, и язык, на котором мы выражаем наши объяснения. В то же время описание Андерсоном открытия Криком и Уотсоном двойной спиральной структуры молекулы ДНК (обеспечивающей механизм сохранения и передачи генетической информации) как открытия секрета жизни только укрепляет мои  позиции. Такое объяснение открытия ДНК повлечет обвинение некоторых биологов в таком же дурном редукционизме, каким представляются Андерсону притязания физиков, занимающихся частицами. Например, Гарри Рубин писал несколько лет тому назад, что «революция, вызванная открытием ДНК, привела к тому, что целое поколение биологов поверило, будто секрет жизни полностью сокрыт в структуре и функциях ДНК[59]. Эта вера сейчас поколеблена и редукционистская программа должна быть дополнена новыми концепциями». Мой друг Эрнст Майр в течение многих лет борется против редукционистского направления в биологии, которое, как он опасается, пытается свести все, что мы знаем о жизни, к изучению ДНК, и добавляет, что «хотя благодаря открытию ДНК, РНК и т.п. была раскрыта химическая природа ряда черных ящиков классической генетики, все же это ни в коей мере не раскрыло суть передачи наследственности»[60].

Я не собираюсь вступать в эту полемику среди биологов, по крайней мере на стороне антиредукционистов. Нет сомнений, что открытие ДНК оказалось необычайно важным для многих областей биологии. И все же есть  некоторые биологи, работу которых непосредственно не затронули открытия в молекулярной биологии. Знание структуры ДНК приносит мало пользы специалисту в области популяционной экологии, пытающемуся объяснить разнообразие видов растений в тропических дождевых лесах, или биомеханику, пытающемуся понять полет бабочек. Я полагаю, что даже если ни один биолог не получил бы никакой пользы от открытий в молекулярной биологии, все же существует один важный аспект этих открытий, который и дает право Андерсону говорить о секрете жизни. Дело не в том, что открытие  ДНК было фундаментальным для всех наук  о жизни, а в том, что ДНК сама есть основа всей жизни. Живые существа таковы, каковы они есть, потому что они прошли долгий путь эволюции к теперешнему виду, а эта эволюция оказалась возможной благодаря свойствам ДНК и связанных с ней молекул, позволяющим организму передавать свой генетический код потомству. Точно так же, независимо от того, полезны или нет открытия  в физике элементарных частиц всем другим ученым, принципы  физики элементарных частиц являются фундаментом всей природы.

Оппоненты редукционизма часто ссылаются на то, что открытия в физике элементарных частиц вряд ли могут пригодиться ученым из других областей. Это не согласуется с историческими свидетельствами. Физика элементарных частиц в первой половине ХХ в. была главным образом физикой электронов и фотонов, и она оказала огромное и бесспорное влияние на наше понимание всех форм материи. Открытия в сегодняшней физике элементарных частиц уже значительно влияют на космологию и астрономию. Так, мы используем наши знания о количестве сортов элементарных частиц для расчетов образования химических элементов в первые несколько минут существования Вселенной. Никто не может сказать, какие еще последствия могут иметь эти открытия.

Но предположим на мгновение, что в дальнейшем никакие  открытия в физике элементарных частиц не будут оказывать никакого влияния на работу ученых в других областях. Все равно работа физиков в области элементарных частиц будет иметь особое значение. Мы знаем, что эволюция живых существ оказалась возможной благодаря свойствам ДНК и других молекул, а свойства любой молекулы определяются свойствами электронов, атомных ядер и электрическими силами, действующими между ними. А почему эти объекты такие, как они есть? Частично это объяснила стандартная модель элементарных частиц, а теперь мы хотим совершить следующий шаг и объяснить стандартную модель и принципы теории относительности и других симметрий, на которых эта модель основана. Я не понимаю, как может все это казаться неважным всякому, кто интересуется тем, как устроен мир, совершенно независимо от любой возможной пользы, которую физика элементарных частиц может принести любому другому ученому.

Вообще говоря, элементарные частицы сами по себе не очень интересны, их даже сравнивать нельзя в этом смысле с людьми. Если не считать импульса и спина, каждый электрон во Вселенной похож на любой другой электрон – если бы вы увидели один электрон, считайте, что вы видели все. Но именно из этой простоты вытекает, что электроны, в противоположность людям, не состоят из множества более фундаментальных составляющих, а сами представляют собой нечто, близкое к фундаментальной составляющей всего остального. Элементарные частицы интересны именно потому, что они так однообразны; благодаря простоте их изучение приближает нас к исчерпывающему пониманию природы.

Пример с высокотемпературной сверхпроводимостью помогает уяснить тот специфический и ограниченный смысл, вкладываемый в слова, что физика элементарных частиц более фундаментальна, чем любые другие области физики. Именно в наши дни Андерсон и другие специалисты в области физики твердого тела пытаются понять загадочное возникновение сверхпроводимости в ряде соединений меди, кислорода и более экзотических элементов при температурах, много больших тех, которые считались возможными. В то же время физики, занимающиеся элементарными частицами, пытаются понять происхождение масс кварков, электронов и других частиц, входящих в стандартную модель. (Обе задачи, оказывается, связаны математически; как мы увидим ниже, обе они сводятся к вопросу, каким образом определенные симметрии, которыми обладали исходные уравнения, теряются в решениях этих уравнений.) Нет сомнений, что специалисты по твердому телу рано или поздно решат проблему высокотемпературной сверхпроводимости без всякой прямой помощи со стороны физиков, занимающихся частицами[61], а когда последние поймут происхождение массы, это скорее всего произойдет без непосредственного участия физиков, занимающихся твердым телом. Разница между этими двумя задачами заключается в том, что когда твердотельщики наконец объяснят явление высокотемпературной сверхпроводимости, то какими бы ослепительными ни были новые идеи, которые будут при этом использованы, все равно в конце концов объяснение примет форму математической выкладки, в которой существование этого явления будет выведено из известных  свойств электронов, протонов и атомных ядер. В противоположность этому, когда ученые, занимающиеся физикой частиц, поймут наконец происхождение массы в стандартной модели, объяснение будет основано на тех свойствах стандартной модели, которые нам сегодня совершенно неведомы и которые мы не можем узнать (хотя и можем догадываться) без новых экспериментальных данных, полученных на установках типа ССК. Поэтому физика элементарных частиц представляет собой границу нашего знания в том смысле, который отсутствует в физике твердого тела.

Само по себе это не решает проблемы распределения денег на исследования. Имеется множество побудительных мотивов научных исследований – применения в медицине и технологии, национальный престиж, любовь к математическим упражнениям, неподдельная радость от того, что стало понятным красивое явление, – которые могут быть удовлетворены при занятиях другими науками точно так же, как и физикой частиц (а иногда и лучше). Физики, занимающиеся элементарными частицами, не считают, что уникальный фундаментальный характер их работы дает им право первыми залезать в общественный кошелек, но они полагают также, что нельзя просто игнорировать это обстоятельство, принимая решения о поддержке научных исследований.

Возможно, наиболее известная попытка установить стандарты для принятия подобных решений принадлежит Альвину Вайнбергу[62]. Еще в статье 1964 г. он предложил такую схему: «Я хотел бы сформулировать критерий научной ценности, предложив, что, при прочих равных условиях, те исследования имеют наибольшую научную ценность, которые наибольшим образом изменяют и делают более ясными соседние научные дисциплины »[63] (выделено им). Прочитав мою статью на ту же тему[64], Альвин написал мне и напомнил о своем предложении. Я его и не забывал, но с ним не согласен. В ответе Альвину я написал, что рассуждения такого рода могут быть использованы для оправдания траты миллиардов долларов на классификацию бабочек Техаса, так как это могло бы прояснить классификацию бабочек, встречающихся в Оклахоме, а также бабочек вообще. Этот глупый пример призван только показать, что ничего не стоит в обоснование неинтересного научного проекта сказать, что он важен для других неинтересных научных проектов. (Похоже, что после этих слов у меня будут проблемы с лепидоптеристами, которые хотели бы истратить миллиарды долларов на классификацию всех бабочек Техаса.) Но вот чего я действительно не вижу в критерии Альвина Вайнберга, так это редукционистской  перспективы, а именно того, что одной из главных причин, делающих столь интересной научную работу, является надежда приблизиться к точке сближения всех наших объяснений.

Некоторые моменты в спорах, ведущихся физиками о редукционизме, удачно использовал Джеймс Глейк (именно он в своих публикациях объяснил широкой публике физику хаоса)[65]. В недавнем выступлении он доказывал:

«Хаос несовместим с редукционизмом. Эта новая наука предъявляет жесткие требования устройству мира, а именно когда дело доходит до самых интересных вопросов: о порядке и беспорядке, распаде и созидании, образовании структуры и самой жизни, во всех этих случаях целое не может быть объяснено через свои составные части.

Существуют фундаментальные законы, управляющие поведением сложных систем, но они не похожи на обычные. Это законы структуры, организации и масштаба, и они просто исчезают, когда мы фокусируем внимание на отдельных составляющих сложной системы, точно так же, как теряет смысл разговор о психологии толпы куклуксклановцев, если вы берете интервью у отдельного ее участника»[66].

Я возразил бы на это, во?первых, что разные вопросы интересны по?разному. Несомненно, проблемы творчества и возникновения жизни интересны, так как мы живы и хотели бы творить. Но есть и другие вопросы, интересные потому, что они подводят нас все ближе к точке сближения наших объяснений. А открытие истоков Нила – оно ведь ничего не дало для лучшего понимания проблем сельского хозяйства в Египте, но кто скажет, что это открытие было неинтересно?

Во?вторых, здесь упускается из виду, что суть подобных вопросов состоит в объяснении целого «через свои составные части»; однако изучение кварков и электронов фундаментально не потому, что все обычное вещество из них состоит, а потому, что мы думаем, что их изучение позволит нам узнать что?то о принципах , на которых все построено. (Именно эксперимент, в котором электронами обстреливали кварки внутри атомных ядер, решил дело в пользу современной единой теории двух из четырех фундаментальных сил в природе – слабых и электромагнитных сил.) На самом деле физик, занимающийся в наши дни частицами, уделяет больше внимания не содержащимся там кваркам и электронам, а экзотическим частицам, не  входящим в обычное вещество, потому что нам кажется, что изучая именно эти частицы, мы быстрее получим ответы на интересующие нас вопросы. Когда Эйнштейн в своей общей теории относительности объяснил природу тяготения, это произошло не «через составные части», а через геометрию пространства?времени. Может так случиться, что физики двадцать первого века обнаружат, что изучение черных дыр или гравитационного излучения дает больше для понимания законов природы, чем физика элементарных частиц. Наша нынешняя сосредоточенность на элементарных частицах основана на тактическом соображении, что в данный  момент истории науки именно этот путь ведет нас к окончательной теории.

Наконец, нужно еще установить, действительно ли существуют новые законы, управляющие сложными системами? Да, конечно, это так в том смысле, что разные уровни восприятия требуют разного языка для описания и анализа. Это в равной степени относится и к химии, и к хаосу. Но фундаментальны  ли новые законы? Контрпримером является упомянутая Глейком толпа линчевателей. Можно попытаться сформулировать все, что мы знаем о толпах, в форме законов (таких, например, как старое изречение, что революции всегда пожирают своих детей), но если мы попросим объяснить, почему эти законы действуют, нас вряд ли удовлетворит ответ, что это – фундаментальные законы, не имеющие объяснений через что?то другое. Мы скорее будем искать редукционистское объяснение, основанное на психологии отдельных людей. Это же верно и в отношении установления хаоса. Поразительный прогресс, достигнутый в последние годы в этой области, заключался не только в наблюдении хаотических систем и формулировке эмпирических законов, управляющих ими; что значительно важнее, законы, которым подчиняется хаотическое поведение, были математически выведены из законов микрофизики, управляющих теми системами, в которых возникает хаос.

Я подозреваю, что все работающие ученые (и, возможно, вообще большинство людей) являются на практике такими же редукционистами, как я, хотя некоторые из них, вроде Эрнста Майра или Филиппа Андерсона, не любят употреблять этот термин. Например, медицинские исследования имеют дело с проблемами столь неотложными и трудными, что часто предложения новых методов лечения вынуждены опираться только на медицинскую статистику а не на понимание того, почему этот метод приносит плоды. Но даже если новая методика предложена на основании проверки на многих пациентах, к ней, скорее всего, будут относиться со скептицизмом до тех пор, пока не удастся понять, как можно объяснить новый метод на основе редукционизма с помощью таких наук, как биохимия или биология клетки. Представьте, что медицинский журнал поместил две статьи, описывающие два новых способа лечения золотухи: с помощью приема внутрь куриного бульона и с помощью прикосновения короля. Даже если статистические данные, представленные в каждой из статей, одинаково убедительны, я полагаю, что медики (да и кто угодно) по?разному прореагируют на эти статьи. В том, что касается куриного бульона, думаю, что большинство людей отнесется к этому методу непредвзято, сохранив право на окончательное суждение до тех пор, пока он не будет независимо проверен. В конце концов, куриный бульон – это смесь очень полезных веществ, и кто знает, какой эффект могут оказывать его составные части на микобактерию, вызывающую золотуху? С другой стороны, какие бы статистические данные ни приводились, чтобы доказать, что прикосновение руки короля помогает излечить золотуху, читатели статьи остались бы в глубоком сомнении, подозревая обман или случайное совпадение, так как они не смогли бы представить себе, как можно было бы хоть когда?нибудь редуктивно объяснить такой метод лечения. Какое дело микобактерии, был ли человек, прикасающийся к больному, должным образом коронован и помазан на царство, или это просто старший сын предыдущего монарха? (Даже в средние века, когда все считали, что прикосновение короля излечивает золотуху, сами короли, похоже, сильно в этом сомневались. Насколько я знаю, во всех средневековых битвах между соперничавшими династиями, например между Плантагенетами и Валуа или Йорками и Ланкастерами, ни один из претендентов на трон ни разу не пытался доказать, что он истинный король, путем демонстрации излечивающей силы своего прикосновения.) Те нынешние биологи, которые попытались бы утверждать, что подобное лечение не требует объяснения, так как сила королевского прикосновения является автономным законом природы, не встретили бы понимания со стороны коллег с редукционистским мировоззрением, так как в его рамках таким автономным законам нет места.

То же самое верно и в отношении всех наук. Мы не должны серьезно относиться к предлагаемым автономным законам макроэкономики, которые не могут быть в принципе объяснены поведением отдельных личностей, или к гипотезам о происхождении сверхпроводимости, которые не могут быть в принципе объяснены свойствами электронов, фотонов и ядер. Редукционистская позиция является хорошим фильтром, позволяющим ученым во всех областях знания не тратить время на обсуждение малообещающих идей. В этом смысле мы все сейчас редукционисты.


[1] Centre Eurepeen des Recherches Nucleaire (CERN) – Европейский Центр Ядерных Исследований. – Прим. перев.

[2] Имеется в виду 1992 г. – Прим. перев.

[3] К сожалению, судьба ССК определилась: конгресс США прекратил финансирование строительства в конце 1993 г. О последствиях этого решения подробнее будет сказано ниже. – Прим. перев.

[4] Я всегда полагал, что согласно учению Аристотеля брошенный камень будет лететь по прямой, пока не истощится его начальный импульс, а затем упадет вертикально вниз. Однако мне не удалось обнаружить это утверждение в его сочинениях. Специалист по Аристотелю Роберт Ханкинсон из Техасского университета заверил меня, что на самом деле Аристотель никогда не утверждал ничего столь противоречащего наблюдениям, и что это есть позднейшее средневековое искажение взглядов Аристотеля.

[5] Zilsel E.  The Genesis of the Concept of Physical Law // Philosophical Review. 51 (1942): 245.

[6] Green P.S.  Alexander to Actium: The Historical Evolution of the Hellenistic Age (Berkeley and Los Angeles: University of California Press, 1990), pp. 456, 475–78.

[7] Я благодарен Б. Нагелю за предложение использовать эту цитату.

[8] См. The Autobiography of Robert A. Millikan (New York: Prentice?Hall, 1950), p. 23, а также заметку К. К. Darrow (Isis 41 (1950): 201).

[9] Речь идет о физике Абдусе Саламе.

[10] Основания для чувства удовлетворенности в науке конца XIX в. можно найти в книге: Badash L.  The Completeness of Nineteenth?Century Science // Isis 63 (1972): 48–58.

[11] Michelson A.A.  Light Waves and Their Uses (Chicago: University of Chicago Press, 1903), p. 163.

[12] Dirac P.A.M.  Quantum Mechanics of Many Electron Systems // Proceedings of the Royal Society Al23 (1929): 713.

[13] Пробелы между инициалами, а также в общераспространенных сокращениях т.д., т.е. и подобных здесь и далее пропущены, чтобы избежать появления разрывов строк посреди тесно связанных между собой сочетаний слов. Использование для этой цели неразрывных пробелов невозможно, т.к. они удаляются библиотечными скриптами. – Прим. авторов fb2?документа.

[14] Цит. пo Boxer S.  // New York Times Book Review, January 26, 1992, p. 3.

[15] Перевод Б. Пастернака.

[16] Huxley T.H.  On a Piece of Chalk / Ed. Loren Eisley (New York: Scribner, 1967).

[17] Мы будем использовать общепринятую единицу измерения энергии электронвольт  (эВ ). Такую энергию получает электрон, если его проталкивает по проводу батарейка напряжением 1 В.

[18] Конкретные цвета меняются от одного соединения меди к другому, поскольку окружающие атомы влияют на энергии атомных состояний.

[19] В металле эти внешние электроны отрываются от отдельных атомов и путешествуют между ними, так что чисто металлическая медь не проявляет особой тенденции поглощать фотоны именно оранжевого цвета, поэтому сама медь не выглядит зелено?голубой.

[20] Речь идет о событиях конца 1970?х гг. – Прим. перев.

[21] Gross D.J.  The Status and Future Prospects of String Theory // Nuclear Physics В (Proceedings Supplement) 15 (1990): 43.

[22] Nagel E.  The Structure of Science: Problems in the Logic of Scientific Explanation (New York: Harcourt, Brace, 1961).

[23] Согласно законам Кеплера, орбиты планет имеют форму эллипсов, в одном из фокусов которых находится Солнце; при обращении вокруг Солнца скорость каждой планеты меняется так, что линия, соединяющая планету с Солнцем, заметает за равные промежутки времени равные площади; квадраты периодов обращения пропорциональны кубам больших полуосей эллиптических орбит. Законы Ньютона утверждают, что каждая частица во Вселенной притягивает любую другую частицу с силой, пропорциональной произведению масс частиц, и обратно пропорциональной квадрату расстояния между ними, а также определяют, как движутся любые тела под действием любой заданной силы.

[24] Shaefer H.F. III.  Methylene: A Paradigm for Computational Quantum Chemistry // Science 231 (1986): 1100.

[25] Ряд теоретиков исследуют возможность проведения вычислений включающих сильные ядерные взаимодействия, представляя пространство?время в виде решетки отдельных точек и используя действующие параллельно компьютеры для определения изменения значений полей в каждой точке. Выражается определенная надежда, что такими методами можно вывести свойства ядер из принципов квантовой хромодинамики. До сих пор не удалось даже вычислить массы протона и нейтрона, из которых состоят ядра.

[26] Эта цитата взята из «Логико?философского трактата» Л. Витгенштейна[26][26] Витгенштейн Л.  Логико?философский трактат. М.: Иностранная литература, 1958.

. Во многом в том же духе мой философски настроенный друг проф. Филип Боббитт с факультета юриспруденции Техасского университета говорил мне: «Когда я отвечаю ребенку, спросившему меня, почему яблоко падает на Землю, что “это из?за тяготения, дорогой”, я не объясняю ничего. Предлагаемые физикой математические описания физического мира не являются объяснениями…». Я согласен с этим утверждением, если все, что подразумевается под тяготением, сводится к тому, что у тяжелых предметов имеется тенденция падать на Землю. С другой стороны, если понимать под тяготением весь комплекс явлений, описанных теориями Ньютона или Эйнштейна, включая движения приливов на Земле, планет и галактик, тогда ответ, что яблоко падает из?за тяготения, безусловно выглядит для меня как объяснение. Во всяком случае, именно так используют слово «объяснение» действующие ученые.

[27] Наиболее стабильными являются те элементы, у которых число электронов полностью заполняет одну или несколько оболочек. К таким элементам относятся благородные газы гелий (два электрона), неон (десять электронов), аргон (восемнадцать электронов) и т.д. (Эти газы называются благородными, так как вследствие стабильности их атомов эти газы не участвуют в химических реакциях.) У кальция двадцать электронов, так что два из них находятся вне заполненных оболочек аргона, и они могут быть легко потеряны. Кислород имеет восемь электронов, так что не хватает как раз двух для того, чтобы заполнить оболочки неона, так что кислород охотно подбирает два электрона, чтобы заполнить дырки в своих оболочках. Углерод имеет шесть электронов, так что его можно рассматривать либо как гелий с четырьмя лишними электронами, либо как неон с четырьмя недостающими электронами, и поэтому углерод может как терять, так и приобретать четыре электрона. (Такая амбивалентность позволяет атомам углерода очень сильно связываться друг с другом, например, как в алмазе.)

[28] Если атом обладает положительным или отрицательным электрическим зарядом, то он стремится захватывать или терять электроны до тех пор, пока не станет нейтральным.

[29] Слова, что Вселенная расширяется, могут ввести в заблуждение, так как ни планетные системы, ни галактики, ни само пространство не расширяются. Галактики разлетаются друг от друга точно так же, как разлеталось бы любое облако частиц, получивших первоначальный толчок, отбрасывающий их друг от друга.

[30] Anderson P.  // Science 177 (1972): 393.

[31] Чтобы определить энтропию, представьте, что температура некоторой системы очень медленно увеличивается от абсолютного нуля. Увеличение энтропии системы при получении каждой последующей маленькой порции тепловой энергии равно этой энергии, деленной на ту абсолютную температуру, при которой тепловая энергия передается.

[32] Важно заметить, что в системе, обменивающейся энергией с окружающей средой, энтропия может уменьшаться. Возникновение жизни на Земле связано с уменьшением энтропии, и это разрешено термодинамикой, поскольку Земля получает энергию от Солнца и отдает энергию в окружающее пространство.

[33] Nagel E.  The Structure of Science, pp. 338–45.

[34] История этой битвы излагается в книге: Brush S.  The Kind of Motion We Call Heat (Amsterdam: North?Holland, 1976), особенно в разделе 1.9 книги 1.

[35] Термодинамика применима к черным дырам не потому, что внутри них находится большое число атомов, а потому, что черные дыры содержат большое число определяемых квантовой теорией гравитации фундаментальных единиц массы, каждая из которых равна 10?5г и называется массой Планка. Если бы черная дыра имела массу меньше 10?5г, термодинамика к ней была бы неприменима.

[36] Hoffman R.  Under the Surface of the Chemical Article // Angewandte Chemie 27 (1988): 1597–1602.

[37] Primas H.  Chemistry, Quantum Mechanics, and Reductionism, 2nd ed. (Berlin: Springer?Verlag, 1983).

[38] Pauling L.  Quantum Theory and Chemistry // Max Plank Festschrift / Ed. B. Kockel, W. Mocke, and A. Papapetrou (Berlin: VEB Deutscher Verlag der Wissenschaft, 1959), pp. 385–88.

[39] Pippard А.В.  The Invincible Ignorance of Science // Contemporary Physics 29 (1988): 393 – лекция памяти Эддингтона, прочитанная в Кэмбридже 28 января 1988.

[40] Иногда утверждают, что разница между человеком и другими животным и состоит в способности говорить и что люди обретают сознание только тогда, когда начинают говорить. В то же время компьютеры используют определенный язык, но не кажутся обладающими сознанием, а наш старый сиамский кот Тай Тай никогда не говорил (и имеет ограниченное число выражений мордочки), но во всех остальных отношениях проявляет те же признаки сознательной деятельности, что и люди.

[41] Ryle G.  The Concept of Mind (London: Hutchinson, 1949).

[42] Gissing G.  The Place of Realism in Fiction. Reprinted in Selections Autobiographical and Imaginative from the Works of George Gissing (London: Jonathan Cape and Harrison Smith, 1929), p. 217.

[43] Moyers B.  A World of Ideas / Ed. B.S. Flowers (New York: Doubleday, 1989), pp. 249–62.

[44] Anderson P.  On the Nature of Physical Law // Physics Today, December 1990, p. 9.

[45] Откровенно говоря, я должен добавить, что Ян рассматривает свою работу как разумное расширение копенгагенской интерпретации квантовой механики, а не как часть паранормальной программы. Реалистичная интерпретация квантовой механики на языке «многих историй» имеет то преимущество, что позволяет избежать такого рода путаницы.

[46] Jahn R.G.  // Physics Today, October 1991, p. 13.

[47] Общая теория относительности во многом основана на том принципе, что гравитационные поля не оказывают  влияния на очень маленькие свободно падающие тела, кроме того, что определяют их свободное падение. Земля находится в состоянии свободного падения в Солнечной системе, поэтому, находясь на Земле, мы не ощущаем гравитационного поля Луны, Солнца или чего?нибудь еще, не считая явлений вроде приливов, возникающих из?за того, что Земля не очень мала.

[48] Science, August 9, 1991, p. 611.

[49] Однажды в статье я назвал эту точку зрения «объективный редукционизм», см. Weinberg S.  Newtonianism, Reductionism, and the Art of Congressional Testimony // Nature 330 (1987): 433–37. Я сомневался, что эта фраза будет подхвачена философами науки, но ее подхватил, по крайней мере, биохимик Дж. Робинсон (См. Robinson J.D.  Aims and Achievements of the Reductionist Approach in Biochemistry/Molecular Biology/Cell Biology: A Response to Kincaid // Philosophy of Science).

[50] Достоевский Ф.М.  Записки из подполья: Собр. соч. в 9 т. Т. 2. М.: ACT, 2003.

[51] Под холизмом (от англ. whole  – целый) понимается изучение сложных структур в их целостности без сведения к изучению отдельных сторон явления. – Прим. перев.

[52] Мауr Е.  How Biology Differs from the Physical Sciences // Evolution at a Crossroads / Ed. D. Depew and B. Weber (Cambridge, Mass.: MIT Press, 1985), p. 44.

[53] Weinberg S.  Unified Theories of Elementary Particle Interactions // Scientific American 231 (July 1974): 50.

[54] Weinberg S.  Newtonianism.

[55] См. Мауr E.  The Limits of Reductionism и мой ответ в журнале Nature 331 (1987): 475.

[56] Насколько я могу понять, Майр различает три вида редукционизма: конструктивный редукционизм  (или онтологический редукционизм, или анализ), являющийся методом изучения объектов путем разложения их на составные части; теоретический редукционизм , являющийся объяснением целой теории с помощью более общей теории; объясняющий редукционизм , представляющий собой точку зрения, что «полное знание о тех далее неделимых составных частях, из которых состоит сложная система, достаточно для ее объяснения». Главная причина, по которой я отвергаю эту классификацию, заключается в том, что каждая из приведенных категорий имеет мало общего с тем, что я имею в виду (хотя, пожалуй, теоретический редукционизм мне ближе всего). Каждая из этих категорий определяется тем, что делали, делают или будут делать ученые; я же говорю о самой природе. Например, хотя физики и не могут объяснить свойства очень сложных молекул вроде ДНК с помощью квантовой механики электронов, ядер и электрических сил, а химикам удается справится с этим с помощью своего языка и своих понятий, все равно не существует независимых принципов химии, являющихся истинами, не основанными на более глубоких принципах физики.

[57] Park R.L.  // The Scientist, June 15,1987 (из доклада на симпозиуме «Большая наука/Малая наука» на ежегодном заседании Американского физического общества 20 мая 1987).

[58] Цит. по Anderson R.W.  Письмо в газету Нью?Йорк Таймс от 8 июня 1986.

[59] Rubin H.  Molecular Biology Running into a Cul?de?sac? Письмо в журнал Nature 335 (19SS): 121.

[60] Mayr Е.  The Growth of Biological Thought: Diversity, Evolution, and Inheritance (Cambridge, Mass.: Harvard University Press, 1982), p. 62.

[61] Я использую здесь слово «прямая», так как на самом деле разные ветви физики оказывают друг другу значительную косвенную помощь. Частично это проявляется в виде взаимного обогащения идеями. Так, физики?твердотельщики добыли один из своих главных математических методов (так называемый метод ренормализационной группы) в физике частиц, а физики?частичники узнали о явлении спонтанного нарушения симметрии из физики твердого тела. В 1987 г. на слушаниях в комитете конгресса, давая показания в поддержку проекта ССК, Роберт Шриффер (один из создателей, вместе с Джоном Бардиным и Леоном Купером, современной теории сверхпроводимости) подчеркнул, что его собственная работа над проблемой сверхпроводимости возникла из опыта работы над мезонными теориями в физике элементарных частиц. (В статье «Джон Бардин и теория сверхпроводимости», опубликованной в журнале Physics Today в апреле 1992 г., Шриффер отмечает, что высказанная им в 1957 г. догадка о виде квантово?механической волновой функции возникла из размышлений о более чем двадцатилетней давности работе Синитиро Томонаги по теории поля.) Конечно, есть и другие способы взаимопомощи разных ветвей физики. Например, если бы не удалось создать магниты со сверхпроводящими обмотками, то энергетические затраты на работу ССК сделали бы проект безнадежно дорогим; синхротронное излучение, испускаемое в качестве побочного продукта в ряде ускорителей высоких энергий, оказалось весьма ценным в медицине и материаловедении.

[62] Мы с Альвином Вайнбергом друзья, но не родственники. В 1966 г., когда я впервые посетил Гарвард, я оказался во время обеда в факультетском клубе за одним столом с покойным Джоном Ван Флеком, несколько резковатым аристократического вида физиком. Он был одним из тех, кто в конце 1920?х гг. впервые применил новые методы квантовой механики к теории твердого тела. Ван Флек спросил меня, не являюсь ли я родственником того  Вайнберга. Я был несколько ошарашен, но потом понял, что он имел в виду: в те годы я был довольно молодым теоретиком, а Альвин был директором Окриджской Национальной лаборатории. Я собрал все мои запасы сарказма и ответил, что я сам по себе  Вайнберг. Мне показалось, что это не произвело на Ван Флека сильного впечатления.

[63] Weinberg A.M.  Criteria for Scientific Choice // Physics Today March 1964, pp. 42–48. Также см. Weinberg A.M.  Criteria for Scientific Choice // Minerva 1 (winter 1963): 159–71; и Criteria for Scientific Choice II: The Two Cultures // Minerva 3 (Autumn 1964): 3–14.

[64] Weinberg S.  Newtonianism.

[65] Gleick J.  Chaos: Making a New Science (New York: Viking, 1987).

[66] Выступление Дж. Глейка на Нобелевской конференции в колледже Густава Адольфа в октябре 1991.

 

 
 
Ко входу в Библиотеку Якова Кротова