Ко входуЯков Кротов. Богочеловвеческая историяПомощь
 

Стивен Вайнберг

МЕЧТЫ ОБ ОКОНЧАТЕЛЬНОЙ ТЕОРИИ

К оглавлению

Глава IX. Контуры окончательной теории

 

…Если

 

Вы можете глядеть в посев времен

 

И знаете судьбу зерна любого,

 

Скажите мне…

 

В. Шекспир. Макбет[211]. Акт I, сцена 3

 

Вполне возможно, что нас отделяют века от окончательной теории, и она окажется совершенно непохожей на то, что мы способны сегодня вообразить. Но допустим на мгновение, что эта теория совсем близко, за углом. Что мы можем в этом случае сказать о ней на основании уже известных нам знаний?

Один из разделов современной физики, который, по моему мнению, сохранится неизменным в окончательной теории – квантовая механика. Дело не только в том, что квантовая механика является основой всех наших представлений о материи и разных взаимодействиях и прошла невиданно жесткую экспериментальную проверку; более важно то, что никому не удалось придумать способ хоть как‑нибудь изменить квантовую механику, который сохранил бы все ее достоинства, но не привел бы к логическим противоречиям.

Хотя квантовая механика является как бы сценой, на которой разыгрываются все явления природы, сама по себе эта сцена пуста. Квантовая механика позволяет вообразить бесчисленное множество возможных физических систем: систем, состоящих из частиц любого сорта и взаимодействующих самым разным образом, и даже систем, вообще не состоящих из частиц. История физики в ХХ в. отмечена все возрастающим пониманием того, что актеров в драме, разыгрывающейся на квантовой сцене, определяют принципы симметрии. Современная стандартная модель сильных, электромагнитных и слабых взаимодействий основана на симметриях, а именно на пространственно‑временных симметриях специальной теории относительности, которые требуют, чтобы стандартная модель была сформулирована на языке теории полей, и на внутренних симметриях, требующих существования электромагнитного и других полей, переносящих взаимодействия. Тяготение тоже можно понять с помощью принципов симметрии, заложенных в эйнштейновскую общую теорию относительности и утверждающих, что законы природы не должны меняться в результате любых возможных изменений нашего описания событий в пространстве и времени.

На основании векового опыта общепризнано, что окончательная теория должна покоится на принципах симметрии. Мы ожидаем, что эти симметрии объединят тяготение со слабыми, электромагнитными и сильными взаимодействиями стандартной модели. Но за прошедшие десятилетия мы так и не узнали, каковы эти симметрии, и не сумели построить удовлетворительной квантовой теории гравитации, включающей симметрии общей теории относительности.

Возможно, мы близки к переменам. За последнее десятилетие бурно развивался радикально новый подход к квантовой теории гравитации, а может быть, и ко всему остальному, – теория струн. Эта теория является первым приемлемым кандидатом на окончательную теорию.

Корни теории струн восходят к 1968 г., когда теоретики пытались понять, как устроены сильные взаимодействия, не обращаясь к квантовой теории полей, не пользовавшейся тогда популярностью. Молодой теоретик из ЦЕРНа Габриэле Венециано сумел просто угадать формулу, определявшую вероятности рассеяния двух частиц на разные углы при разных энергиях и обладавшую некоторыми общими свойствами, которые вытекали из принципов теории относительности и квантовой механики. Используя известные математические приемы, которые в свое время проходит каждый студент‑физик, он сумел построить поразительно простую формулу, удовлетворявшую всем необходимым условиям. Формула Венециано привлекла всеобщее внимание. Вскоре другие теоретики обобщили ее и положили в основу систематической приближенной схемы. В те годы никто и не помышлял о возможном применении этих идей к квантовой теории тяготения. Вся работа мотивировалась надеждой лучше понять сильные ядерные взаимодействия. (До создания правильной теории сильных взаимодействий – квантовой теории поля, известной под названием квантовая хромодинамика, оставалось еще несколько лет.)

В процессе работы стало ясно[212], что формула Венециано и ее расширения и обобщения – не просто удачные догадки, а теория физических сущностей нового типа, получивших название релятивистских квантово‑механических струн . Конечно, обычные струны состоят из частиц – протонов, нейтронов, электронов. Но новые струны совсем другие: предполагается, что протоны и нейтроны состоят из них . Дело обстояло не так, будто на кого‑то сошло вдохновение и он догадался, что материя построена из струн, а затем начал строить соответствующую теорию; на самом деле теория струн была построена до того , как кто‑то понял, что это такое.

Струны можно представить себе как крохотные одномерные разрезы на гладкой ткани пространства. Струны могут быть открытыми, с двумя свободными концами, или замкнутыми, как резиновая лента. Пролетая в пространстве, струны вибрируют. Каждая из струн может находиться в любом из бесконечного числа возможных состояний (мод ) колебаний, похожих на обертоны, возникающие при колебаниях камертона или скрипичной струны. Со временем колебания скрипичной струны затухают, так как энергия этих колебаний переходит в энергию случайного движения атомов, из которых скрипичная струна состоит, т.е. в энергию теплового движения. Напротив, струны, о которых сейчас идет речь, поистине фундаментальные составные части материи, и могут продолжать колебаться бесконечно долго. Они не состоят из атомов или чего‑то в этом роде, поэтому энергии их колебаний не во что переходить[213].

Предполагается, что струны очень малы, так что если разглядывать их с достаточно больших расстояний, они кажутся точечными частицами. Так как струна может находиться в любой из бесконечно большого числа возможных мод колебаний, она выглядит как частица, которая может принадлежать к одному из бесконечно большого числа возможных сортов, соответствующих определенной моде колебаний струны.

Первые варианты теории струн[214] были не свободны от трудностей. Вычисления показывали, что среди бесконечно большого числа мод колебаний замкнутой струны существует одна мода, в которой струна выглядит как частица с нулевой массой и спином, вдвое большим, чем у фотона[215]. Напомним, что развитие теории струн началось с попытки Венециано понять сильные ядерные взаимодействия, так что первоначально эта теория рассматривалась как адекватное описание сильного взаимодействия и участвующих в нем частиц. Неизвестна ни одна частица такой массы и с таким спином, принимающая участие в сильных взаимодействиях, более того, мы полагаем, что если бы такая частица существовала, она должна была бы быть давно обнаружена, так что налицо серьезное противоречие с экспериментом.

Но все дело в том, что частица с нулевой массой и спином, вдвое большим, чем у фотона, существует . Но это не частица, принимающая участие в сильных взаимодействиях, это гравитон, квант гравитационного излучения. Более того, с 60‑х гг. было известно, что любая теория, в которой присутствует частица такого спина и такой массы, должна выглядеть более или менее похоже на общую теорию относительности[216]. Та безмассовая частица, которая была теоретически обнаружена в ранних версиях теории струн, отличалась от истинного гравитона только в одном важном пункте – обмен этой новой частицей должен был порождать силы, напоминавшие гравитационные, но только в 1029раз более сильные.

Как часто бывает в физике, теоретики, занимавшиеся струнами, нашли правильное решение неправильно поставленной задачи. В начале 80‑х гг. теоретики все больше и больше стали приходить к убеждению, что новые безмассовые частицы, возникшие как математическое следствие уравнений струнных теорий, являются не сильновзаимодействующим аналогом гравитона, а самым настоящим гравитоном[217]. Чтобы при этом гравитационное взаимодействие имело правильную интенсивность, нужно было увеличить коэффициент натяжения струн в основных уравнениях теории до такой степени, чтобы разность энергий между наинизшим и следующим по величине энергетическими состояниями струны составляла не пустячную величину порядка нескольких сот миллионов эВ, характерную для ядерных явлений, а величину порядка планковской энергии 1019ГэВ, когда гравитационное взаимодействие становится столь же сильным как и другие взаимодействия. Эта энергия так велика, что все частицы стандартной модели – кварки, глюоны, фотоны – должны быть сопоставлены с наинизшими модами колебаний струны, в противном случае, требовалось бы так много энергии на то, чтобы их породить, что мы никогда не смогли бы эти частицы обнаружить.

С этой точки зрения квантовая теория поля типа стандартной модели представляет собой низкоэнергетическое приближение к фундаментальной теории, которая является совсем не теорией полей, а теорией струн. Сейчас мы полагаем, что квантовые теории полей работают столь успешно при энергиях, доступных современным ускорителям, совсем не потому, что окончательное описание природы возможно на языке квантовой теории поля, а потому, что любая  теория, удовлетворяющая требованиям квантовой механики и специальной теории относительности, при достаточно малых энергиях выглядит как квантовая теория поля. Мы все больше и больше воспринимаем стандартную модель как эффективную квантовую теорию , причем прилагательное «эффективная» служит для напоминания, что все такие теории суть лишь низкоэнергетические приближения к совершенно другой теории, возможно, теории струн. Стандартная модель – сердцевина современной физики, но такое изменение отношения к квантовой теории поля может означать начало новой эры постмодерна.

Так как теории струн включают в себя гравитоны и еще кучу других частиц, впервые возникает основа для построения возможной окончательной теории. Действительно, поскольку представляется, что наличие гравитона – неизбежное свойство любой теории струн, можно сказать, что такая теория объясняет существование гравитации. Эдвард Виттен, ставший позднее ведущим специалистом по теории струн, узнал об этой стороне теории в 1982 г. из обзорной статьи теоретика Джона Шварца. Он вспоминает, что эта мысль стала «величайшим интеллектуальным потрясением в моей жизни» [218].

Похоже, что теории струн сумели решить и проблему бесконечностей, сводившую на нет все предыдущие попытки построения квантовой теории тяготения. Хотя струны и выглядят как точечные частицы, все же главное в них то, что они не являются точечными. Можно убедиться, что бесконечности в обычных квантовых теориях поля непосредственно связаны с тем, что поля описывают точечные частицы. (Например, закон обратных квадратов для силы взаимодействия точечных электронов приводит к бесконечной величине силы, если поместить оба электрона в одну точку.) С другой стороны, должным образом сформулированная теория струн, похоже, вообще свободна от бесконечностей[219].

Интерес к теориям струн реально возник в 1984 г., после того, как Джон Шварц вместе с Майклом Грином показали, что две конкретные теории струн прошли проверку на математическую непротиворечивость (что не удавалось доказать в ранее изучавшихся струнных теориях)[220]. Наиболее волнующим свойством теорий, рассмотренных Грином и Шварцем, было то, что они обладали определенной жесткостью, той самой, которую мы хотели бы видеть в окончательной теории. Хотя можно было представить себе огромное количество разных теорий открытых струн, оказалось, что только две из них имеют смысл с математической точки зрения. Энтузиазм в отношении теорий струн достиг уровня лихорадки, когда одна группа теоретиков[221] показала, что низкоэнергетический предел двух теорий Грина‑Шварца необычайно напоминает нашу сегодняшнюю модель слабых, электромагнитных и сильных взаимодействий, а другая группа (ее прозвали «Принстонский струнный квартет»[222]) обнаружила ряд струнных теорий, еще более соответствующих стандартной модели. Многим теоретикам показалось, что удалось ухватить окончательную теорию.

С тех пор энтузиазм несколько поостыл. Сейчас ясно, что существуют тысячи теорий струн, столь же математически состоятельных, как и первые две теории Грина‑Шварца. Все эти теории удовлетворяют некоторой фундаментальной симметрии, известной как конформная симметрия . Такая симметрия возникает не из наблюдений природных явлений, как, скажем, эйнштейновский принцип относительности. Напротив, конформная симметрия представляется необходимой[223], чтобы гарантировать совместимость теорий струн с квантовой механикой. С этой точки зрения, тысячи разных теорий струн просто представляют разные способы удовлетворить требованиям конформной симметрии. Широко распространено мнение, что все эти разные теории струн на самом деле не разные, а лишь представляют различные способы решения уравнений одной и той же лежащей в основе всего теории. Но мы в этом не уверены, и никто не знает, какой могла бы быть такая теория.

Каждая из тысяч отдельных теорий струн обладает своей пространственно‑временной симметрией. Некоторые из этих теорий удовлетворяют принципу относительности Эйнштейна, в других теориях мы не можем даже различить что‑то, напоминающее обычное трехмерное пространство. Кроме того, каждая теория струн обладает своими внутренними симметриями того же общего типа, как и внутренние симметрии, лежащие в основе сегодняшней стандартной модели слабых, электромагнитных и сильных взаимодействий. Но главное отличие теорий струн от всех более ранних теорий заключается в том, что пространственно‑временные и внутренние симметрии не задаются в теории струн руками, а являются математическими следствиями конкретного способа, которым законы квантовой механики (а следовательно, требование конформной симметрии) удовлетворяются в каждой конкретной теории струн. Поэтому теории струн потенциально представляют собой важный шаг вперед в рациональном объяснении природы. Кроме того, они, по‑видимому, являются наиболее глубокими, математически непротиворечивыми теориями, совместимыми с принципами квантовой механики, и в частности, единственными такими теориями, включающими что‑то, похожее на тяготение.

Довольно много современных молодых физиков‑теоретиков работают над развитием теории струн. Получено несколько вдохновляющих результатов. Например, оказалось, что в рамках теории струн естественно получается равенство констант взаимодействия сильных и электрослабых взаимодействий при очень больших энергиях, определяемых через натяжение струны, хотя и нет отдельной симметрии, объединяющей эти взаимодействия. Тем не менее, до сих пор не удается получить детальные количественные предсказания, позволяющие осуществить решающую проверку теории струн.

Этот тупик привел к печальному расколу физического сообщества. Теория струн предъявляет к исследователю большие требования. Очень мало теоретиков, работающих над другими проблемами, имеют достаточный запас знаний, чтобы понять технические детали в статьях по теории струн. В то же время, мало кто из специалистов по теории струн имеет время на изучение других разделов физики, особенно экспериментальной физики высоких энергий. Реакцией многих моих коллег на эту невеселую ситуацию явилась определенная враждебность по отношению к теории струн. Я не разделяю этих чувств. Теория струн представляется на сегодняшний день единственным кандидатом на окончательную теорию – как же, в таком случае, можно надеяться, что многие блестящие молодые теоретики откажутся  от работы над этой теорией? Конечно, жалко, что теория пока что оказалась не слишком успешной, но, как и все остальные ученые, специалисты по струнам прилагают максимум усилий, чтобы преодолеть очень трудный период в истории физики. Мы просто обязаны надеяться на то, что либо теория струн приведет к более осязаемым результатам, либо новые эксперименты приведут к прогрессу в других направлениях.

К сожалению, никто еще не сумел построить конкретную теорию струн, включающую все пространственно‑временные и внутренние симметрии и тот набор кварков и лептонов, который наблюдается в природе. Более того, мы даже до сих пор не знаем, как перечислить все возможные теории струн или узнать их свойства. Для решения этих проблем, похоже, нужно разработать новые методы вычислений, далеко выходящие за рамки тех методов, которые так хорошо работали в прошлом. Например, в квантовой электродинамике мы можем рассчитать эффект обмена двумя фотонами между электронами в атоме как малую поправку к эффекту обмена одним фотоном, а затем рассчитать эффект обмена тремя фотонами как еще меньшую поправку и т.д., прекратив это вычисление, как только оставшиеся поправки станут пренебрежимо малы. Такой метод вычислений называется теорией возмущений. Однако главные проблемы теории струн связаны с обменом бесконечным количеством струн, так что их нельзя решить методом теории возмущений.

Дела обстоят еще хуже. Даже если бы мы знали, как математически обращаться с теориями струн, и смогли бы найти какую‑то одну из этих теорий, соответствующую наблюдаемым в природе явлениям, все равно у нес нет сегодня критерия того, почему именно эта  теория струн применима к реальному миру. Я снова повторяю – цель физики на ее самом фундаментальном уровне заключается не только в том, чтобы описать мир, но и объяснить, почему он таков, каков он есть.

В поисках критерия, который позволит нам выбрать правильную теорию струн, нам, может быть, придется привлечь принцип, имеющий несколько сомнительный статус в физике. Его называют антропным принципом , и он утверждает, что законы природы должны разрешать существование разумных существ, которые могут задавать вопросы об этих законах.

Идея антропного принципа[224] восходит к замечанию, что законы природы удивительно хорошо приспособлены к существованию жизни. Знаменитым примером этого является синтез элементов. Согласно современным представлениям, этот синтез начался тогда, когда нашей Вселенной было примерно три минуты отроду (до этого момента было слишком жарко для того, чтобы протоны и нейтроны могли объединиться в атомные ядра), и затем продолжался внутри звезд. Сначала считалось, что элементы образовывались путем последовательного добавления по одной ядерной частице к атомному ядру, начиная с простейшего элемента – водорода, ядро которого состоит из одного протона. При построении таким образом ядра гелия, состоящего из четырех ядерных частиц (двух протонов и двух нейтронов) не возникало никаких проблем, но уже следующий шаг оказался невозможным, так как не существует стабильных ядер с пятью ядерными частицами. В конце концов, решение проблемы было найдено Эдвином Солпитером в 1952 г.[225] Оно заключалось в том, что при столкновении двух ядер гелия внутри звезды может образоваться нестабильное ядро изотопа 8Ве, и прежде чем это ядро распадется обратно на два ядра гелия, оно может поглотить еще одно ядро гелия, образовав ядро углерода. Однако, как подчеркнул в 1954 г. Фред Хойл, для того, чтобы такой процесс мог осуществиться и привести к наблюдаемой распространенности углерода в космосе, должно существовать состояние ядра углерода с такой энергией, чтобы вероятность его образования при столкновении ядер гелия и бериллия‑8 была аномально велика. (Именно такое состояние было затем найдено экспериментаторами, работавшими вместе с Хойлом[226].) Если в звездах образуется углерод, то уже нет никаких препятствий для образования и всех более тяжелых элементов, включая кислород и азот, необходимых для известных форм жизни[227]. Но чтобы все это работало нужно, чтобы энергия того самого состояния ядра углерода была очень близка к сумме энергий ядра бериллия‑8 и ядра гелия. Если бы энергия такого состояния была слишком большой или слишком маленькой, в звездах смогло бы образоваться слишком мало ядер углерода или более тяжелых элементов, а из одних ядер водорода и гелия не могла бы возникнуть жизнь. Энергии ядерных состояний сложным образом зависят от всех физических констант, таких как массы и заряды разных типов элементарных частиц. На первый взгляд, кажется очень примечательным, что все константы должны иметь такие значения, которые позволяют образоваться ядрам углерода в описанной реакции.

Все же мне не кажутся очень убедительными свидетельства того, что законы природы специально настроены так, чтобы сделать возможной жизнь. С одной стороны, группа физиков[228] показала недавно, что можно существенно увеличить энергию обсуждаемого состояния ядра углерода без заметного уменьшения количества углерода, производимого в звездах[229]. Кроме того, если мы начнем менять константы природы, найдется много других состояний ядра углерода и других ядер, которые позволят осуществить альтернативный синтез элементов тяжелее гелия. У нас нет разумных способов оценить, сколь мала вероятность того, что константы природы должны принимать значения, приемлемые для существования разумной жизни.

Мы не знаем, нужен или нет антропный принцип для объяснения значений энергий ядерных состояний, но в одном случае этот принцип кажется просто основанным на здравом смысле[230]. Возможно, существуют различные логически допустимые вселенные, причем каждая со своим набором фундаментальных законов. Если это так, то несомненно существует множество вселенных, законы и история эволюции которых делают их неприемлемыми для разумной жизни.

Но всякий ученый, который спрашивает, почему мир такой, какой он есть, должен жить в одной из тех вселенных, где разумная жизнь могла  возникнуть[231].

Слабым местом такой интерпретации антропного принципа является неясность понятия множественности вселенных. Одна из очень простых возможностей, предложенная Хойлом[232], заключается в том, что константы природы меняются от места к месту, так что Вселенная разделена на некие субвселенные с разными законами в них. Похожая интерпретация множественности вселенных возникает и в том случае, если мы допустим, что те числа, которые мы называем константами природы, были разными в разные эпохи эволюции Вселенной. Кроме того, много обсуждалась более революционная возможность, что наша и другие логически возможные вселенные с другими окончательными законами каким‑то образом отщепляются от большей Мегавселенной. Например, при недавних попытках применить квантовую механику к гравитации было замечено, что хотя обычное пустое пространство выглядит спокойным и не имеющим никаких свойств, как поверхность океана, если смотреть на нее с большой высоты, то при более внимательном рассмотрении пространство кишит квантовыми флуктуациями, так что могут открыться «кротовые норы»[233], соединяющие одни части Вселенной с другими частями, весьма удаленными в пространстве и во времени. В 1987 г., следуя идеям более ранней работы Стивена Хокинга, Джеймса Хартля и других, Сидни Коулмен из Гарварда показал, что открывающиеся и закрывающиеся кротовые норы эквивалентны изменению различных констант, входящих в уравнения для разных полей. Как и в случае интерпретации квантовой механики с помощью идеи о множественности вселенных, волновая функция Вселенной разделяется на огромное количество слагаемых, каждое из которых соответствует разным значениям «констант» природы[234], принимаемых с разной вероятностью. Какую бы теорию этого типа не рассматривать, совершенно ясно, что мы обнаружим себя в той области пространства, или в той эпохе космической истории, или в том слагаемом общей волновой функции, в которых константы природы случайно приняли благоприятные для существования разумной жизни значения.

Конечно, физики продолжают попытки объяснить значения природных констант без обращения к антропному принципу. Мое собственное мнение заключается в том, что рано или поздно мы обнаружим, что все константы природы (возможно, за исключением одной) фиксируются теми или иными принципами симметрии, а существование каких‑то форм жизни совершенно не требует особой тонкой настройки законов природы. Единственная константа природы, которую, может быть, придется объяснять с помощью какого‑то подобия антропного принципа, это космологическая постоянная .

Первоначально космологическая постоянная возникла в физической теории при первой попытке Эйнштейна применить только что созданную общую теорию относительности ко Вселенной в целом. В этой работе Эйнштейн предположил, как это было в те годы принято, что Вселенная статична, но вскоре обнаружил, что уравнения тяготения в первоначальной форме, примененные для описания Вселенной в целом, не имеют статических решений. (Этот вывод, на самом деле, не является спецификой для общей теории относительности. В ньютоновской теории тяготения мы также можем получить решения, описывающие галактики, налетающие друг на друга под влиянием взаимного притяжения. Мы можем найти и решения, описывающие разлет галактик в результате какого‑то начального взрыва. Однако вряд ли мы будем ожидать, что некая усредненная галактика будет просто неподвижно висеть в пространстве.) Чтобы получить решения, описывающие статическую Вселенную, Эйнштейн решил изменить теорию. Он ввел в свои уравнения слагаемое, которое было подобно силам отталкивания на больших расстояниях и могло скомпенсировать гравитационную силу притяжения. Введенное слагаемое содержало одну свободную постоянную, определявшую в статической космологии Эйнштейна размер Вселенной и получившую название космологической постоянной .

Все это происходило в 1917 г. Из‑за войны Эйнштейн не знал, что американский астроном Весто Слайфер уже обнаружил свидетельства того, что галактики (как мы их сейчас называем) разлетаются в разные стороны, так что Вселенная на самом деле не статична, а расширяется. После войны Эдвин Хаббл, пользуясь новым 100‑дюймовым телескопом на горе Маунт‑Вильсон, подтвердил это расширение и измерил его скорость. Эйнштейн глубоко сожалел[235], что испортил свои уравнения введением космологической постоянной. Однако возможность существования такой постоянной так просто не исчезла.

С одной стороны, нет оснований не  включать космологическую постоянную в уравнения Эйнштейна. Теория Эйнштейна была основана на принципе симметрии, утверждавшем, что законы природы не должны зависеть от той системы отсчета в пространстве и во времени, которую мы используем для изучения этих законов. Но первоначальная теория Эйнштейна не была самой общей теорией, удовлетворяющей такому принципу симметрии. Существует громадное количество возможных разрешенных слагаемых, которые можно добавить в уравнения поля тяготения, причем влияние этих слагаемых на астрономических расстояниях будет пренебрежимо мало.

Но кроме этих слагаемых есть одно‑единственное слагаемое, которое можно добавить в уравнения поля общей теории относительности без нарушения фундаментальных принципов симметрии этой теории и которое будет важно в космологических масштабах, – это слагаемое, включающее космологическую постоянную. В 1915 г. Эйнштейн опирался на предположение, что уравнения поля тяготения должны быть простейшими из возможных. Опыт последних трех четвертей ХХ в. научил нас не доверять такому предположению. Мы обнаружили, что всякое усложнение наших теорий, не запрещенное какой‑то симметрией или другим фундаментальным принципом, происходит на самом деле. Поэтому недостаточно сказать, что космологическая постоянная это ненужное усложнение. Простота, как и все остальное, требует объяснения.

В квантовой механике проблема еще сложнее. Разные поля, заполняющие нашу Вселенную, испытывают непрерывные квантовые флуктуации, в результате которых пустое пространство обретает энергию. Эта энергия наблюдаема только благодаря оказываемому гравитационному действию. Дело в том, что энергия любого сорта порождает гравитационное поле и, в свою очередь, испытывает воздействие других гравитационных полей, так что энергия, заполняющая пространство, может оказывать существенное влияние на расширение Вселенной. Мы не можем вычислить энергию в единице объема, порождаемую такими квантовыми флуктуациями, – если пользоваться при расчете простейшими приближениями, энергия оказывается бесконечной. Но если сделать несколько разумных предположений о том, как отбросить высокочастотные флуктуации, ответственные за эту бесконечность, то вакуумная энергия в единице объема оказывается все равно чудовищно большой, в 10120раз большей, чем это допускается наблюдаемой скоростью расширения Вселенной. Пожалуй, это самый худший провал оценки по порядку величины во всей истории науки.

Если энергия пустого пространства положительна, то она порождает гравитационное отталкивание между частицами материи на очень больших расстояниях, в точности как то слагаемое с космологической постоянной, которое Эйнштейн добавил к своим уравнениям в 1917 г. Поэтому мы можем рассматривать энергию, возникающую вследствие квантовых флуктуаций, как дающую вклад в «полную» космологическую константу. Расширение Вселенной определяется только этой полной космологической константой, а не отдельно той космологической константой, которая входит в полевые уравнения общей теории относительности, или константой, связанной с квантовой энергией вакуума. Возникает возможность, что проблема космологической постоянной может как бы скомпенсировать проблему энергии пустого пространства. Иными словами, возможно, что отрицательная  космологическая постоянная в эйнштейновских полевых уравнениях в точности сокращает действие чудовищной вакуумной энергии, возникающей за счет вакуумных флуктуаций. Но чтобы не войти в противоречие с тем, что мы знаем о расширении Вселенной, полная космологическая постоянная должна быть столь мала, что два слагаемых, из которых она состоит, обязаны сократиться вплоть до 120 первых значащих цифр. Это не пустяк, который можно оставить без объяснений.

В течение многих лет физики‑теоретики пытаются понять механизм сокращения полной космологической постоянной[236], пока что без особого успеха. Если принять теорию струн, то ситуация становится еще хуже. Разные теории струн приводят к разным значениям полной космологической постоянной (включающей эффекты вакуума гравитационного поля), но все они оказываются чудовищно большими[237]. При такой большой полной космологической постоянной пространство было бы так скручено, что ни в малейшей степени не было бы похоже на обычное трехмерное пространство с евклидовой геометрией, в котором мы живем.

Если все иные способы объяснения не годятся, нам ничего не остается, как вернуться назад, к антропному принципу. Может существовать много разных «вселенных», каждая со своим значением космологической постоянной. Если это так, то единственная Вселенная, в которой, как можно думать, мы находимся, это та, где полная космологическая постоянная достаточно мала, чтобы жизнь могла возникнуть и развиться. Более точно, если бы полная космологическая постоянная была большой и отрицательной, то Вселенная прошла бы свой цикл расширения и последующего сжатия слишком быстро, и жизнь не успела бы развиться. Наоборот, если бы полная космологическая постоянная была большой и положительной, Вселенная продолжала бы вечное расширение, но силы отталкивания, порождаемые космологической постоянной, предотвратили бы гравитационное сжатие с образованием тех комков, из которых потом в ранней Вселенной возникли галактики и звезды, а следовательно, жизни опять не нашлось бы места. Возможно, что правильная теория струн – это теория (не знаем, единственная или нет), которая приводит к значению полной космологической постоянной, лежащему только в том сравнительно узком интервале небольших значений, которые допускают существование жизни.

Одним из интересных следствий такой линии рассуждений является вывод, что нет никаких причин, почему полная космологическая постоянная (включающая эффекты квантовых флуктуаций вакуума) должна строго равняться нулю. Антропный принцип требует всего лишь, чтобы она была достаточно мала и позволяла галактикам образоваться и выжить в течение миллиардов лет. На самом деле, астрономические наблюдения уже давно указывают на то, что полная космологическая постоянная не равна нулю, а имеет небольшое положительное значение.

Одно из таких свидетельств связано со знаменитой проблемой космологической «скрытой массы». Наиболее естественным значением плотности массы Вселенной (которое кстати, требуется и в популярных сейчас космологических теориях) является такое значение, которое только‑только позволяет Вселенной расширяться вечно[238]. Но эта плотность в пять‑десять раз больше той, которая определяется массой скоплений галактик (это вытекает из изучения движения галактик в таких скоплениях). Скрытая масса могла бы соответствовать какому‑то типу темной материи, но есть и другая возможность. Как уже отмечалось, наличие положительной космологической постоянной эквивалентно постоянной положительной однородной плотности энергии, которая, согласно знаменитому соотношению Эйнштейна между энергией и массой, эквивалентна постоянной однородной плотности массы. Таким образом, не исключено, что недостающие 80–90 % космической плотности «массы» обеспечиваются совсем не реальным веществом того или иного сорта, а положительной космологической постоянной.

Мы не хотим этим сказать, что нет вообще никакой разницы между плотностью реальной материи и положительной полной космологической постоянной. Вселенная расширяется, так что какой бы ни была сегодня плотность реальной материи, в прошлом она была значительно больше. Напротив, полная космологическая постоянная и соответствующая ей плотность массы неизменны во времени. Чем больше плотность материи, тем больше скорость расширения Вселенной, так что в прошлом скорость расширения должна была бы быть намного больше, если бы скрытая масса была связана не с космологической постоянной, а с обычной материей.

Другое указание на положительность полной космологической постоянной связано с давно дебатируемой проблемой возраста Вселенной. В принятых космологических теориях мы используем наблюдаемую скорость расширения Вселенной, чтобы затем установить, что ее возраст составляет от 7 до 12 миллиардов лет. Но возраст сферических звездных скоплений внутри нашей собственной Галактики оценивается обычно как 12–15 миллиардов лет. Мы сталкиваемся с перспективой, что Вселенная моложе, чем звездные скопления внутри нее. Чтобы избежать этого парадокса, следует принять наименьшую оценку для возраста скоплений и наибольшую оценку для возраста Вселенной. С другой стороны, как мы видели, введение положительной космологической постоянной вместо темной материи приводит к уменьшению наших оценок скорости расширения Вселенной в прошлом, а следовательно, к увеличению возраста Вселенной, получаемого из любого сегодняшнего значения скорости расширения. Например, если космологическая постоянная вносит вклад в 90 % космической плотности массы, то даже при самых больших сегодняшних оценках скорости расширения, возраст Вселенной получается равным не семь миллиардов, а не менее одиннадцати миллиардов лет. Таким образом, исчезает всякое серьезное расхождение с возрастом сферических скоплений.

Положительная космологическая постоянная, обеспечивающая 80–90 % современной космической плотности массы, хорошо укладывается в те пределы, которые допускают существование жизни. Мы знаем, что квазары и, возможно, также галактики, уже образовались после Большого взрыва в эпоху, когда размер Вселенной был в шесть раз меньше, чем сейчас. Это следует из того факта, что мы наблюдаем свет от квазаров с длиной волны, увеличившейся в шесть раз (т.е. испытавшей красное смещение). В ту эпоху реальная плотность массы Вселенной была в шесть в кубе, т.е. в двести с лишним раз больше, чем сейчас, так что космологическая постоянная, соответствующая плотности массы, всего лишь в пять‑десять раз большей сегодняшней  плотности, не могла оказывать существенного влияния на образование галактик тогда , хотя и могла предотвратить образование галактик в более позднее время. Итак, исходя из антропного принципа, можно дать грубую оценку величины космологической постоянной – она должна обеспечивать плотность массы, в пять‑десять раз большую чем сегодняшняя космическая плотность.

К счастью, этот вопрос (не в пример другим, обсуждавшимся в этой главе) можно довольно скоро решить с помощью астрономических наблюдений. Как мы видели, скорость расширения Вселенной в прошлом должна была быть гораздо больше, если скрытая масса состоит из обычной материи, а не связана с космологической постоянной. Эта разница в скоростях расширения влияет на геометрию Вселенной и на траектории световых лучей, что может быть замечено астрономами. (Например, должны меняться как число галактик, разбегающихся от нас с разными скоростями, так и число галактических гравитационных линз, т.е. галактик, гравитационные поля которых отклоняют лучи света от более далеких объектов, приводя к появлению нескольких изображений.) Пока что наблюдения не позволяют сделать окончательные выводы, но исследования активно проводятся в нескольких обсерваториях, так что вскоре будет либо подтверждена, либо опровергнута гипотеза, что космологическая постоянная обеспечивает 80–90 % сегодняшней плотности массы Вселенной. Такая космологическая постоянная все равно очень сильно меньше той, которая ожидается из оценок величины квантовых флуктуаций. Понять этот факт можно будет только с помощью антропного принципа. Итак, если наблюдения подтвердят такое значение космологической постоянной, появятся основания утверждать, что наше собственное существование входит важной составной частью в объяснение, почему Вселенная такая, какая она есть.

Все же, как бы ни было сейчас плохо, я надеюсь, что такого объяснения не потребуется. Как физик‑теоретик я предпочел бы, чтобы мы могли делать точные предсказания, а не смутные утверждения, что значения каких‑то констант должны лежать в интервале, более или менее благоприятном для существования жизни. Надеюсь, что теория струн станет реальной основой окончательной теории, и что эта теория будет обладать достаточной предсказательной силой, чтобы определить значения всех констант природы, включая и космологическую постоянную. Поживем – увидим.

Глава Х. На пути к цели

 

Наконец‑то полюс! Награда трех столетий… Я не мог заставить себя осознать это. Все казалось таким простым и обычным.

 

Роберт Пири. Дневник

 

Трудно представить, что мы когда‑нибудь будем знать окончательные физические принципы, которые не объясняются с помощью еще более глубоких принципов. Многим кажется само собой разумеющимся, что вместо этого будет открываться бесконечная цепочка все более глубоких и глубоких принципов. Например, Карл Поппер, патриарх современных философов науки, отвергает «идею окончательного объяснения» [239]. Он настаивает, что «всякое объяснение можно объяснять дальше с помощью теории или предположения, имеющих большую степень универсальности. Не может существовать объяснения, не нуждающегося в дальнейшем объяснении…».

Может случиться, что Поппер и другие ученые, верящие в бесконечную цепь все более фундаментальных принципов, окажутся правы. Но мне кажется, что такую точку зрения нельзя обосновывать тем, что до сих пор никто не открыл окончательной теории. Это напоминает утверждения некоторых ученых XIX в., доказывавших, что поскольку все предыдущие арктические экспедиции в течение сотен лет обнаруживали, что как далеко на север не забирайся, там все равно остается еще больше неисследованных районов моря и льда, следовательно, либо нет никакого Северного полюса, либо во всяком случае никто его никогда не достигнет. Все же некоторым это удалось.

Создается широко распространенное впечатление, что в прошлом ученые часто убаюкивали себя мыслями, будто они нашли окончательную теорию. Они вели себя подобно исследователю Фредерику Куку, считавшему в 1908 г., что именно он достиг Северного полюса. Ученые строили сложные теоретические схемы, объявляли их окончательной теорией, а затем с тупым упорством защищали их, пока неопровержимые экспериментальные доказательства не убеждали новые поколения ученых, что все эти схемы были неверны. Но, насколько я знаю, ни один уважаемый физик в ХХ в. не заявлял о создании окончательной теории. Правда, физики иногда недооценивают то расстояние, которое нужно еще пройти, прежде чем достичь окончательной теории. Вспомним предсказание Майкельсона, сделанное в 1902 г., что «вскоре наступит день, когда сходящиеся линии от многих, кажущихся далекими друг от друга областей знания соединятся… в общей точке». Совсем недавно Стивен Хокинг, принимая Лукасовскую кафедру математики в Кембридже (эту кафедру занимали перед ним Ньютон и Дирак), предположил в своей вступительной лекции, что модные в то время теории «расширенной супергравитации» станут основой теории, похожей на окончательную. Сомневаюсь, чтобы Хокинг повторил это сегодня. Но ни Майкельсон, ни Хокинг не заявляли, что окончательная теория уже построена.

Если история чему‑нибудь учит, так это тому, что окончательная теория существует . В ХХ в. мы наблюдали схождение стрел объяснений, похожее на схождение меридианов к Северному полюсу. Основополагающие принципы нашей науки хотя и не приняли окончательной формы, но постоянно становились все проще и экономнее. Мы видели это схождение на примере свойств кусочка мела. Я сам наблюдал все это на протяжении моей карьеры ученого. Когда я учился на старших курсах, мне приходилось поглощать огромное количество разнообразной информации о слабых и сильных взаимодействиях элементарных частиц. Сегодняшние студенты, занимающиеся физикой элементарных частиц, изучают стандартную модель, много новой математики и этим ограничиваются. (Профессора физики часто в отчаянии воздевают руки к небу, ругая студентов, которые так мало знают о реальных явлениях в физике частиц, но думаю, что те, кто учил меня в Корнелле и Принстоне, точно так же воздевали руки по поводу того, как мало я знаю фактов, касающихся атомной спектроскопии.) Очень трудно воспринимать последовательность все более и более фундаментальных теорий, становящихся все проще и всеохватнее, и не верить, что цепочка объяснений где‑то сойдется.

Маловероятно, но возможно, что последовательности все более фундаментальных теорий не будут ни сходящимися, ни бесконечно продолжающимися. Кембриджский философ Майкл Редхед полагает, что они могут замкнуться сами на себя[240]. Он отмечает, что ортодоксальная копенгагенская интерпретация квантовой механики требует существования макроскопического мира наблюдателей и измерительных приборов, что в свою очередь, объясняется с помощью квантовой механики. Эта точка зрения, по‑моему, дает еще один пример неудовлетворительности копенгагенской интерпретации и разнице в подходах к объяснению квантовых явлений и наблюдателей, которые их изучают. В реалистическом же подходе к квантовой механике Хью Эверетта и других существует только одна волновая функция, описывающая все явления, включая опыты и наблюдателей, причем фундаментальные законы описывают эволюцию этой волновой функции.

Еще более радикальной является гипотеза, что на дне мы обнаружим вообще полное отсутствие законов[241]. Мой друг и учитель Джон Уилер когда‑то предположил, что нет никакого фундаментального закона, а все законы, которые мы сейчас изучаем, приписываются природе благодаря тем способам, которыми мы совершаем наблюдения[242]. Рассуждая несколько иначе, теоретик из Копенгагена Хольгер Нильсен предложил «случайную динамику»[243], согласно которой, что бы мы ни предположили об устройстве природы на очень малых расстояниях или при очень больших энергиях, все явления, доступные наблюдению в наших лабораториях, будут выглядеть примерно одинаково.

Мне кажется, что и Уилер, и Нильсен просто отпихивают от себя проблему окончательных законов. Мир Уилера, в котором нет законов, все равно нуждается в метазаконах, которые должны указывать нам, как наблюдения создают регулярности в природных явлениях. Среди метазаконов должна быть и сама квантовая механика. Аналогично, Нильсен нуждается в некотором метазаконе, объясняющем как выглядит природа, если изменить шкалу расстояний и энергий, в которой мы проводим наши измерения. Для этой цели он предполагает, что справедливы так называемые уравнения ренормализационной группы, но существование таких уравнений в мире без всяких законов кажется весьма проблематичным. Я подозреваю, что все попытки обойтись без фундаментальных законов природы если и будут успешными, то сведутся к введению метазаконов, описывающих как возникает то, что сейчас  мы называем законами.

Есть еще одна возможность, которая представляется мне более вероятной и более тревожной. Возможно, что окончательная теория, т.е. простой набор принципов, из которых вытекают все объяснения, действительно существует, но мы никогда не сможем узнать, что это такое. Например, вполне может быть так, что люди просто недостаточно разумны, чтобы открыть или понять окончательную теорию. Вполне можно натренировать собаку выполнять разные умные вещи, но думаю, никому не удастся научить собаку использовать квантовую механику для расчета уровней энергии атома. Лучшим аргументом в пользу того, что наш род способен к дальнейшему интеллектуальному прогрессу является наша волшебная способность объединять наши мозги с помощью языка. Но этого может оказаться мало. Юджин Вигнер предупреждал, что «у нас нет оснований утверждать, что наш разум может сформулировать идеальные законы, полностью объясняющие явления неодушевленной природы»[244]. К счастью, до сих пор, похоже, наши интеллектуальные ресурсы не исчерпаны. По крайней мере, в физике каждое новое поколение студентов‑старшекурсников кажется талантливее предыдущего.

Значительно большую тревогу вызывает то, что попытка открыть окончательные законы может упереться в проблему денег. Мы уже ощутили вкус этой проблемы во время недавних дебатов в США о завершении строительства ССК. Цена в 8 миллиардов долларов на десять лет вполне укладывается в возможности страны, но даже сами физики не торопятся предлагать более дорогие проекты ускорителей следующего поколения.

Помимо оставшихся невыясненными вопросов о стандартной модели, на которые мы надеемся получить ответ с помощью ССК, существуют и более глубокие вопросы, касающиеся объединения сильных, электрослабых и гравитационных взаимодействий, которые невозможно адресовать ни к одному из планируемых сейчас ускорителей. Истинно фундаментальная планковская энергия, при которой все эти вопросы можно экспериментально изучать, примерно в сто триллионов раз больше, чем энергия ССК. Ожидается, что все силы природы объединяются именно при этой энергии. Кроме того, согласно современным теориям струн, примерно такая же энергия нужна на то, чтобы возбудить первые моды колебаний струн, кроме тех низших мод, которые наблюдаются как обычные кварки, фотоны и другие частицы, описываемые стандартной моделью. К сожалению, такие энергии безнадежно недостижимы. Даже если объединить все экономические ресурсы человечества и направить их на решение этой задачи, мы все равно не представляем сегодня, как построить машину, способную ускорять частицы до таких энергий. Дело не в том, что сами по себе такие энергии недостижимы – планковская энергия, грубо говоря, равна химической энергии сгорания полного бака бензина в автомобиле. Трудность в том, как сконцентрировать всю эту энергию в одном протоне или электроне. Нам нужны совершенно новые идеи относительно конструкции ускорителей, кардинально отличающиеся от используемых сегодня. Возможно, удастся использовать ионизированный газ, чтобы облегчить передачу энергии от мощных лазерных пучков к отдельным заряженным частицам, но даже если это удастся осуществить, скорость реакций частиц при таких энергиях будет настолько мала, что эксперименты станут невозможными. Более вероятно, что новые достижения в теории или в экспериментах другого типа когда‑нибудь сделают ненужным строительство ускорителей, позволяющих получить все большие и большие энергии.

Моя точка зрения заключается в том, что окончательная теория существует, и мы способны ее открыть. Может быть, эксперименты на ССК дадут настолько важную новую информацию, что теоретики смогут завершить работу над окончательной теорией, не обращаясь к изучению процессов между частицами при планковских энергиях.

Возможно, что уже сегодня мы можем подобрать кандидата на подобную окончательную теорию среди теорий струн.

Как было бы странно, если бы окончательная теория была создана при нашей жизни! Открытие окончательных законов природы означало бы самый резкий скачок в интеллектуальной истории человечества со времен начала развития современной науки в XVII в. Можем ли мы сейчас вообразить, на что все это было бы похоже?

Хотя и нетрудно представить окончательную теорию, которая не имеет  объяснений с помощью более глубоких принципов, очень трудно вообразить окончательную теорию, которая не нуждается  в таком объяснении. Какой бы ни была окончательная теория, она определенно не будет логически неизбежной . Даже если окажется, что окончательная теория – это теория струн, которую можно выразить в нескольких простых уравнениях, и даже если нам удастся показать, что это единственно возможная квантово‑механическая теория, способная математически непротиворечиво описать гравитацию наравне с другими силами, мы все равно не перестанем задавать себе вопросы, почему вообще существует тяготение, и почему природа должна подчиняться правилам квантовой механики. Почему Вселенная не состоит просто из точечных частиц, вечно вращающихся по своим орбитам согласно законам ньютоновской механики? Почему вообще все существует? Редхед, возможно, отражает точку зрения большинства[245], когда отрицает всякий смысл «в поиске каких‑то самодостаточных априорных оснований науки».

С другой стороны, Уилер как‑то заметил, что когда мы доберемся до окончательных законов природы, мы будем страшно удивлены, как это мы до них сразу не догадались. Возможно, Уилер и прав, но только потому, что очевидность этих законов станет для нас результатом хорошей тренировки, которая длилась многие века научных разочарований и успехов. Думаю, что старый вопрос: «Почему?», может быть, в несколько смягченной форме, и в этом случае останется с нами. Гарвардский философ Роберт Нозик пытался разрешить эту проблему и пришел к выводу, что вместо попыток вывести окончательную теорию на основе чистой логики нам нужно искать аргументы в пользу привлекательности такой теории, выходящие за рамки голых фактов[246].

С моей точки зрения, лучшее, на что можно надеяться, – это доказать, что окончательная теория, не будучи логически неизбежной, все же логически изолирована . Иными словами, может оказаться, что хотя мы всегда сможем представить другие теории, полностью отличные от истинной окончательной теории (вроде скучного мира частиц, управляемых законами ньютоновской механики), обнаруженная нами окончательная теория будет настолько жесткой, что любая попытка хоть чуть‑чуть ее изменить будет приводить к логическим противоречиям. В логически изолированной теории каждая константа природы может быть вычислена из первых принципов, малое изменение значения любой константы разрушит согласованность теории. Окончательная теория будет напоминать кусок дорогого фарфора, который невозможно согнуть, не разрушив. В этом случае, хотя мы и не будем знать, почему окончательная теория верна, мы будем, основываясь на логике и чистой математике, знать, по крайней мере, почему истина выглядит так, а не иначе.

Это не просто возможность: мы уже довольно далеко прошли по дороге к такой логически изолированной теории. Самыми фундаментальными из известных физических принципов являются законы квантовой механики, лежащие в основе всего, что мы знаем о материи и ее взаимодействиях. Квантовая механика не является логически неизбежной; нет ничего логически невозможного и в ее предшественнице – механике Ньютона. Тем не менее, все попытки физиков хоть чуточку  изменить законы квантовой механики, не приходя при этом к логическим несуразностям вроде отрицательных значений вероятностей, полностью провалились.

Но квантовая механика сама по себе еще не есть полная физическая теория. Она ничего не говорит нам о том, какие частицы и силы могут существовать в природе. Откройте любой учебник по квантовой механике. Вы найдете там множество примеров самых разнообразных гипотетических частиц и сил, причем большинство из них не имеют ничего общего с теми, которые реально наблюдаются в природе. Но при этом все эти частицы и силы прекрасно согласуются с принципами квантовой механики, так что их можно использовать для тренировки студентов в применении этих принципов. Разнообразие возможных теорий резко уменьшается, если рассматривать только те квантово‑механические теории, которые совместимы с специальной теорией относительности. Большинство таких теорий можно логически исключить, так как они тянут за собой всякие глупости, вроде бесконечных энергий или бесконечных скоростей реакций. Но и после этого остается множество логически возможных теорий, например, теория сильных ядерных взаимодействий – квантовая хромодинамика, в рамках которой во Вселенной нет ничего, кроме кварков и глюонов. Большинство из оставшихся теорий исключаются, если потребовать, чтобы они включали в себя гравитацию. Не исключено, что нам удастся математически доказать, что такие требования оставляют только одну логически возможную квантово‑механическую теорию, возможно, какую‑то единственную теорию струн. Если такое случится, то хотя и останется еще огромное количество других логически возможных окончательных теорий, лишь одна из них будет описывать что‑то отдаленно напоминающее наш собственный мир.

Но почему окончательная теория должна описывать что‑то похожее на наш мир? Объяснение, возможно, связано с тем, что Нозик назвал принципом плодовитости . Он утверждает, что все логически возможные вселенные в определенном смысле существуют, причем в каждой – свои наборы фундаментальных законов. Принцип плодовитости сам ничем не объясняется, но в нем есть, по крайней мере, какая‑то приятная самосогласованность. Как пишет Нозик, принцип плодовитости утверждает, что «реализуются все возможности, в том числе, и возможность существования самого этого принципа».

Если такой принцип верен, то существует наш собственный квантово‑механический мир, но существует и ньютоновский мир частиц, вечно вращающихся друг относительно друга, существуют бесчисленные миры, в которых нет ничего, и существуют столь же бесчисленные миры, свойства которых мы даже не можем себе представить. Разница между этими мирами не просто в разнице так называемых констант природы, меняющихся от одной части Вселенной к другой, от одной эпохе к другой или от одного слагаемого в волновой функции к другому. Как мы видели, все подобные возможности могут быть реализованы как следствия некоторой действительно фундаментальной теории, вроде квантовой космологии. Но при этом мы все равно должны будем понять, почему фундаментальная теория такая, а не другая. Вместо этого принцип плодовитости предполагает, что существуют совершенно разные вселенные, подчиняющиеся совершенно разным законам. Но если все эти вселенные недостижимы и непознаваемы, утверждение об их существовании, похоже, не имеет никакого смысла, кроме возможности избежать вопроса, почему они не существуют. Похоже, проблема в том, что мы пытаемся рассуждать логически по поводу вопроса, не поддающегося логическому анализу: что должно или не должно вызывать в нас ощущение чуда.

Принцип плодовитости дает еще один способ подтвердить полезность антропного принципа для объяснения, почему окончательные законы нашей  Вселенной таковы, каковы они есть. Может существовать множество допустимых вселенных, законы природы в которых или история эволюции неблагоприятны для возникновения разумной жизни, однако любой ученый, спрашивающий о том, почему мир устроен так, а не иначе, обязательно должен жить в одной из других вселенных, где разумная жизнь могла  возникнуть. С этой точки зрения, можно сразу отвергнуть вселенную, управляемую ньютоновской физикой (помимо всего прочего, в ней не было бы стабильных атомов), или вселенную, в которой нет ничего.

Есть и экстремальная возможность, что существует только одна логически изолированная теория, не содержащая  неопределенных констант и совместимая с существованием разумных существ, способных размышлять над окончательной теорией. Если это удастся показать, то мы окажемся так близко, насколько это возможно, к удовлетворительному объяснению того, почему мир таков, каков он есть.

Каковы будут последствия открытия подобной окончательной теории? Конечно, полный ответ можно будет дать только после того, когда мы эту теорию узнаем. Может быть, то, что мы узнаем об устройстве мира, будет для нас столь же удивительным, как законы ньютоновской механики были бы удивительны для Фалеса. Но можно быть твердо уверенным в одном: открытие окончательной теории не станет концом научных исследований. Даже если не касаться проблем, которые необходимо будет исследовать в связи с техникой или медициной, останется множество проблем чистой науки, над которыми ученые будут биться, так как у этих задач должны быть красивые решения. Уже сейчас в физике есть явления вроде турбулентности или высокотемпературной сверхпроводимости, ожидающие глубокого и красивого объяснения. Никто не знает толком, как образовались галактики, как был запущен генетический механизм, или как знания хранятся в мозгу человека. Ни на одну из этих проблем открытие окончательной теории не окажет никакого влияния.

С другой стороны, открытие окончательной теории может иметь последствия, выходящие далеко за рамки науки. Умы многих людей заражены сегодня различными иррациональными предубеждениями, от сравнительно безобидной астрологии до сатанинских идеологий крайне опасного толка. То, что до сих пор мы не знаем окончательных законов природы, позволяет всем этим людям надеяться, что когда‑нибудь их любимые предрассудки найдут подобающее место в структуре науки. Было бы глупо надеяться, что любое открытие в науке может само по себе излечить человечество от всех его предрассудков, но все же открытие окончательной теории, по крайней мере, оставило бы меньше места для иррациональных верований.

Открытие окончательной теории может принести разочарование, так как природа станет более обычной, в ней останется меньше чудес и тайн. Нечто подобное уже случалось и ранее. На протяжении почти всей человеческой истории карты Земли указывали неизведанные пространства, так что воображение людей могло заполнять их драконами, золотыми городами и антропофагами. Поиск знаний во многом был уделом географических открытий. Когда тенниссоновский Улисс решил «последовать за знанием как звезда на небе, и погрузиться в самые глубины человеческих мыслей», он отправился через неизведанную Атлантику «в сторону заката, к месту купания всех западных звезд». Но в наши дни каждый гектар поверхности Земли нанесен на карты, и все драконы куда‑то улетели. С открытием окончательных законов испарятся наши мечты. Останется бесконечное количество научных задач, перед учеными раскроется для исследования вся Вселенная, но подозреваю, что ученые будущего будут немного завидовать физикам наших дней, так как мы все еще идем по дороге, ведущей к открытию окончательных законов.

Глава XI. А как насчет Бога?

 

– Ты знаешь, – сказал Порт, и голос его звучал как‑то странно, как это бывает после долгого молчания в мертвой тишине, – здесь небо очень странное. Когда я гляжу на него, мне часто кажется, что там, наверху, – стена, защищающая нас от того, что за ней.

 

Кейт слегка вздрогнула и переспросила:

 

– От того, что за ней?

 

– Да.

 

– Но что там, за ней? – Ее голос был еле слышен.

 

– Я думаю, ничего. Просто тьма. Полная ночь.

 

Поль Боулс. Охраняющие небеса

 

«Небеса проповедуют славу Божию, и о делах рук Его вещает твердь»[247]. Царю Давиду или тому, кто писал этот псалом, звезды должны были казаться зримым свидетельством более высокого существования, совершенно непохожего на наш скучный подлунный мир из скал, камней и деревьев. Со времен Давида утекло много воды. Солнце и другие звезды давно уже потеряли особый статус. Мы понимаем теперь, что это шарообразные тела из раскаленного газа, сжимаемые силами тяготения, которым противодействуют силы теплового давления, возникающие за счет термоядерных реакций в сердцевине звезд. О славе Божией эти звезды говорят нам не больше и не меньше, чем камни, валяющиеся вокруг нас.

Если и есть что‑то в природе, что мы могли бы открыть, и что пролило бы свет на дело рук Божьих, так это окончательные законы природы. Зная эти законы, мы имели бы в своем распоряжении книгу правил, управляющих звездами, камнями и всем чем угодно. Физик Стивен Хокинг называет законы природы Божественным разумом[248], и это вполне оправданно. Другой физик, Чарльз Мизнер, использует такой же образ[249], сравнивая перспективы развития физики и химии: «Химик‑органик на вопрос: “Почему существуют девяносто два элемента и когда они были созданы?” может ответить: “Это знают в соседнем кабинете”. Но физик, если его спросят: “Почему Вселенная устроена так, что в ней действуют именно эти, а не другие физические законы?”, вполне может ответить: “А бог его знает”».

Эйнштейн как‑то сказал своему ассистенту Эрнсту Шварцу: «Что меня действительно интересует, так это вопрос, имел ли Бог выбор, создавая наш мир?»[250] По другому поводу он сформулировал цель занятий физикой в том, чтобы «не только знать, какова природа и как ведутся ее дела, но приблизиться, насколько это возможно, к утопической и кажущейся самонадеянной цели – узнать, почему природа такая, а не другая… Узнать, что, так сказать, сам Господь не мог бы устроить все иным, отличным от уже существующего теперь, образом… В научном исследовании имеется прометеевский элемент… В этом для меня всегда была особая магия научного исследования»[251]. Религия Эйнштейна была столь неопределенной, что, мне кажется, он выражался метафорически, это чувствуется по словам «так сказать». Несомненно, что подобная метафора вполне естественна для физиков, поскольку физика – наука фундаментальная. Теолог Поль Тиллих заметил как‑то[252], что среди всех ученых только физики способны употреблять слово «бог» без смущения. Верит физик во что‑нибудь или является атеистом, он неизбежно прибегает к этой метафоре, когда говорит об окончательных законах, как о проявлении Божественного разума…

Я однажды столкнулся с этим в неожиданном месте, в офисе палаты представителей в Вашингтоне. В 1987 г. я давал показания в защиту проекта Сверхпроводящего суперколлайдера (ССК) перед комитетом палаты по науке, космосу и технологиям. Я описал, как в процессе изучения элементарных частиц мы открываем законы, которые становятся все более согласованными и универсальными, и как мы начинаем подозревать, что это не случайность, что существует красота этих законов, отражающая что‑то, что встроено в структуру Вселенной на самом глубоком уровне. После того, как я сделал эти замечания, последовали замечания других свидетелей и вопросы со стороны членов палаты. Они вылились в диалог между двумя членами комитета[253], конгрессменом Гаррисом Фавеллом, республиканцем из Иллинойса, который в целом положительно относился к проекту ССК, и конгрессменом Доном Риттером, республиканцем из Пенсильвании, бывшим инженером‑металлургом, который был одним из самых яростных противников проекта в конгрессе.

М‑р Фавелл : …Благодарю вас. Я удовлетворен всеми вашими показаниями. Считаю, что они были замечательными. Если когда‑нибудь мне понадобится кому‑то объяснить, почему нужен ССК, я обращусь за помощью к вашим свидетельствам. Они будут очень полезны. Иногда мне хочется, чтобы все было выражено в одном слове, хотя это почти невозможно. Мне кажется, др. Вайнберг, что вы близко подошли к этому, и хотя я не уверен, но записал вашу мысль. Вы сказали, что подозреваете, что не случайно существуют законы, управляющие материей, и я пометил у себя, что не поможет ли это найти Бога? Я уверен, что вы не говорили этого, но действительно ли это поможет нам узнать столь многое о Вселенной?

М‑р Риттер : Настаивает ли уважаемый коллега на сказанном? Если мне позволят на минуту прервать джентльмена, я хотел бы сказать…

М‑р Фавелл : Я не уверен, что хочу настаивать.

М‑р Риттер : Если эта машина может сделать такое, я собираюсь изменить свою точку зрения и поддержать проект.

У меня хватило здравого смысла не влезать в спор, так как я не думаю, что конгрессмены хотели знать мое мнение о поиске Бога на ССК, а также потому, что я не был уверен, что изложение моих мыслей обо всем этом будет полезным для проекта.

Представления некоторых людей о Боге столь широки и податливы, что эти люди неизбежно находят Бога везде, куда ни обратится их взор: «Бог – это предел всего», «Бог – наше лучшее естество» или: «Бог – это Вселенная». Конечно, слову «бог», как и всякому иному, можно придать любой смысл по нашему желанию. Если вы захотите заявить, что «Бог – это энергия», то обнаружите Бога и в куче угля. Но если все же слова имеют для нас хоть какую‑то ценность, нам следует уважать то, в каком смысле они исторически употреблялись, особенно сохраняя те различия, которые не дают смыслу одних слов смешиваться со смыслом других.

Мне кажется, что если слово «бог» и должно как‑то использоваться, оно должно подразумевать заинтересованного Бога, Создателя и Законодателя, установившего не только законы природы и Вселенной, но и нормы добра и зла, личность, проявляющую участие в наших делах, короче, существо, которому стоит поклоняться[254]. Это тот Бог, который имел значение для мужчин и женщин на протяжении всей истории. Ученые и другие люди иногда используют слово «бог»  для обозначения чего‑то столь абстрактного и неопределенного, что Его нельзя отличить от законов природы. Эйнштейн сказал однажды, что он верит «в Бога Спинозы, проявляющего себя в гармонии всего сущего, а не в Бога, занимающегося судьбами и деяниями человеческих существ»[255]. Но есть ли для нас какая‑то разница в том, используем ли мы слово «бог» вместо слов «порядок» или «гармония», за исключением, может быть, желания избежать обвинения в безбожии? Конечно, каждый волен использовать слово «бог» в таком смысле, но мне кажется, что тогда понятие Бога делается не столько неправильным, сколько не очень существенным.

Найдем ли мы заинтересованное божество в окончательных законах природы? В самой постановке вопроса есть что‑то абсурдное, и не только потому, что мы до сих пор не знаем окончательных законов, но в еще большей степени потому, что мы не в силах даже представить себя в положении обладателей всех окончательных законов, не требующих объяснения с помощью еще более глубоких принципов. Но сколь бы необдуманным ни казался этот вопрос, вряд ли можно удержаться от искушения узнать, сможем ли мы найти какой‑то ответ на наши самые глубокие вопросы, увидим ли мы какие‑то признаки деятельности заинтересованного Творца в окончательной теории. Я думаю, что этого не произойдет.

Весь наш опыт на протяжении всей истории науки свидетельствует об обратном движении – к холодной безличности законов природы. Первый великий шаг в этом направлении заключался в демистификации небес. Каждому известны главные действующие лица: Коперник, Галилей, обосновавший правоту Коперника[256], Бруно, высказавший догадку, что Солнце – лишь одна из множества звезд, и Ньютон, показавший, что одни и те же законы движения и тяготения применимы как к Солнечной системе, так и к телам на Земле[257]. Я полагаю, что ключевым было наблюдение Ньютона, что один и тот же закон тяготения управляет и движением Луны вокруг Земли, и движением тела, падающего на поверхность Земли. Уже в ХХ в. еще один шаг к развенчанию таинственной роли неба был сделан американским астрономом Эдвином Хабблом. Измерив расстояние до туманности Андромеды, Хаббл показал, что она (а следовательно, и тысячи похожих на нее туманностей) находится не на окраине нашей Галактики, а представляет самостоятельную галактику, не менее впечатляющую, чем наша. Современные космологи говорят даже о принципе Коперника: ни одна космологическая теория не должна восприниматься всерьез, если в ней нашей Галактике приписывается какое‑то особое место во Вселенной.

И жизнь также потеряла покров таинственности. В начале XIX в. Юстус фон Либих и другие химики‑органики показали, что не существует препятствий к лабораторному синтезу ряда химических соединений, например мочевины, связанных с феноменом жизни. Наиболее важными были работы Чарльза Дарвина и Альфреда Рассела Уоллеса, показавших, каким образом чудесные способности живых существ могут развиться путем естественного отбора без всякого предварительного плана или руководства. В ХХ в. процесс демистификации ускорился, о чем свидетельствуют непрерывные успехи биохимии и молекулярной биологии в объяснении деятельности живых существ.

Исчезновение покрова таинственности над явлением жизни оказало значительно большее влияние на религиозные чувства, чем любое открытие в физике. Неудивительно, что наиболее непримиримое противодействие продолжают встречать не открытия в физике и астрономии, а редукционизм в биологии и теория эволюции.

Даже от ученых можно услышать иногда намеки на витализм, т.е. веру в то, что существуют биологические процессы, которые нельзя объяснить с помощью химии и физики. В ХХ в. биологи (включая антиредукционистов вроде Эрнста Майра) в целом стараются отстраниться от витализма, но не далее как в 1944 г. Эрвин Шрёдингер доказывал в своей книге «Что такое жизнь?», что «мы уже достаточно много знаем о материальной основе жизни, чтобы с уверенностью утверждать, что сегодняшние законы физики не могут описать это явление». Доводы Шрёдингера сводились к тому, что генетическая информация, управляющая живыми организмами, слишком устойчива для того, чтобы вписаться в мир непрерывных флуктуаций, описываемых законами квантовой механики и статистической физики. Ошибка Шрёдингера была отмечена Максом Перутцем[258], специалистом по молекулярной биологии, установившим среди прочего структуру гемоглобина: Шрёдингер не принял во внимание устойчивость, которую могут порождать химические процессы, известные как катализ энзимов.

Возможно, один из самых уважаемых ученых критиков теории эволюции, профессор Филип Джонсон[259] из Калифорнийского юридического института, признает, что эволюция происходила, и что в некоторых случаях это было связано с естественным отбором, но он настаивает, что «не существует неопровержимых экспериментальных доказательств», что эволюция не управлялась каким‑то Божественным планом. Конечно, нечего и надеяться когда‑либо доказать, что никакая сверхъестественная сила не нажимала на рычажки, чтобы благоприятствовать одним мутациям и мешать другим. Но примерно то же можно сказать о любой научной теории. Успешное применение законов Ньютона или Эйнштейна к движению тел Солнечной системы никак не мешает предположению, что изредка какая‑то комета получает небольшой толчок от Божественной канцелярии. Совершенно ясно, что Джонсон ставит этот вопрос не из‑за желания проявить беспристрастную непредубежденность, а потому, что по религиозным соображениям его гораздо больше заботит проблема жизни, чем движение комет. Однако единственный путь, по которому может идти любая наука, это предположить, что не было никакого Божественного вторжения, и посмотреть, насколько далеко удастся при этом продвинуться.

Джонсон пытается доказать, что естественная эволюция, «та эволюция, которая совершается без участия или руководства Создателя, находящегося вне природы», на самом деле не позволяет удовлетворительно объяснить происхождение видов.

Думаю, что здесь он ошибается, так как недостаточно чувствует те проблемы, с которыми сталкивается любая научная теория при попытке описать то, что мы наблюдаем. Даже если отвлечься от прямых ошибок, наши вычисления и наблюдения всегда основаны на предположениях, выходящих за пределы применимости той теории, которую мы проверяем. Никогда не было такого положения, чтобы вычисления, основанные на ньютоновской теории тяготения или на любой другой теории, находились бы в идеальном согласии со всеми экспериментами. В трудах современных палеонтологов и биологов‑эволюционистов можно обнаружить проблемы, которые так знакомы физикам. Используя теорию естественной эволюции, биологи имеют дело с поразительно успешной теорией, которая, однако, далеко не завершена, чтобы объяснить все факты. Мне кажется чрезвычайно важным, что мы можем далеко продвинуться в объяснении мира не только в физике, но и в биологии, не привлекая при этом Божественное вмешательство.

Однако Джонсон прав в другом отношении. Он показывает, что между теорией естественной эволюции и религией в обычном понимании существует пропасть, и резко критикует тех ученых и педагогов, которые это отрицают. Он настаивает, что «естественный отбор совместим с существованием Бога только при условии, что под словом “бог” мы подразумеваем не более чем первопричину, устранившуюся от дальнейшей деятельности после того, как установлены законы природы, и запущен естественный механизм».

Проблема несовместимости современной теории эволюции и веры в заинтересованного Бога, по моему мнению, не относится к логике. Можно вообразить, что Бог установил законы природы и привел в действие механизм эволюции с намерением, чтобы когда‑нибудь в результате естественного отбора возникли мы с вами, однако, существует реальная несовместимость темпераментов. В конце концов религиозные чувства возникают не в головах тех мужчин и женщин, которые занимаются спекуляциями о наделенных даром предвидения первопричинах, а в сердцах тех, кто тоскует по непрерывному вмешательству заинтересованного Бога.

Религиозные консерваторы, не в пример их либеральным оппонентам, понимают, как высоки ставки в спорах о преподавании теории эволюции в школах. В 1983 г., вскоре после переезда в Техас, я был приглашен выступить перед комиссией сената штата Техас по поводу закона, запрещающего изложение теории эволюции в издаваемых за счет штата учебниках для вузов, если равное количество страниц в них не посвящено креационизму. Один из членов комитета спросил меня, как может штат поддерживать преподавание научной теории, вроде теории эволюции, которая столь разрушительно действует на религиозные чувства. Я ответил, что было бы неправильно, если бы приверженец атеизма уделял теории эволюции больше внимания, чем это нужно для преподавании биологии, но согласно первой поправке к Конституции было бы столь же неправильно уделять эволюции меньше внимания, чтобы защищать религиозные верования.

Просто это не дело учебных заведений – так или иначе обсуждать религиозные приложения научных теорий. Мой ответ не удовлетворил сенатора, так как и он, и я знали, какой эффект будет от курса биологии, в котором теории эволюции уделено должное место. Когда я покидал зал заседаний, он пробормотал мне вслед, что «Бог все равно на небесах». Может быть и так, но битву мы выиграли: в издаваемых в Техасе учебниках для высшей школы не только разрешено, но требуется излагать современную теорию эволюции, причем без всякого креационистского вздора. Но на Земле есть много мест (в наши дни особенно в странах ислама), где эту битву еще предстоит выиграть, причем нет уверенности, что она будет выиграна надолго.

Часто можно услышать, что между религией и наукой нет противоречия. Например, в рецензии на книгу Джонсона Стивен Гулд замечает, что религия и наука не вступают в противоречие, так как «наука изучает фактическую действительность, а религия исследует человеческую мораль»[260]. В большинстве случаев я согласен с Гулдом, но здесь он зашел слишком далеко. Значение религии определяется тем, во что реально верят религиозные люди, и я полагаю, что большая часть верующих во всем мире была бы удивлена, если бы узнала, что религия не имеет отношения к фактической действительности.

Однако точка зрения Гулда широко распространена в наши дни среди ученых и религиозных либералов. Это кажется мне серьезным отступлением религии от ранее занимаемых позиций. Когда‑то природа казалась необъяснимой без нимфы в каждом ручье и дриады на каждом дереве. Даже в конце XIX в. развитие растений и животных рассматривалось как явное доказательство существования Творца. В природе есть еще бесчисленное количество вещей, которые мы не можем объяснить, но мы полагаем, что знаем те принципы, на которых они построены. Тот, кто хочет настоящей тайны, должен обратиться к космологии и физике элементарных частиц. Для тех, кто не видит никакого конфликта между религией и наукой, религия практически полностью отступила с территории, занятой наукой.

Судя по этому историческому опыту, я предполагаю, что, хотя мы и будем восторгаться красотой окончательных законов природы, мы не обнаружим, что жизнь или разум имеют особый статус. Более того, мы не откроем никаких стандартов моральных ценностей. Таким образом, мы не найдем никаких указаний на существование какого‑то Бога, заботящегося об этих вещах. Моральные принципы можно обнаружить где угодно, но только не в законах природы.

Должен признать, что иногда природа кажется более красивой, чем это строго необходимо. За окном моего домашнего кабинета растет каркасное дерево, на которое часто прилетают стайки птиц: голубые сойки, виреи с желтыми горлышками и самые редкие, но и самые красивые красные кардиналы. Хотя я достаточно хорошо понимаю, каким образом в результате соревнования самцов постепенно развилась эта яркая окраска перьев, все же возникает почти непреодолимое желание вообразить, что вся эта красота была когда‑то создана нам на радость. Однако бог птиц и деревьев должен быть также и богом врожденных уродств и рака.

Верующие люди в течение столетий пытаются разрешить проблему теодицеи, т.е. проблему существования страданий в мире, который, по предположению, управляется Богом, несущим только благо. Были найдены хитроумные решения этой проблемы, основанные на различных предполагаемых Божественных планах. Я не собираюсь даже пытаться возражать против этих решений, тем более предлагать свое собственное. Воспоминания о Холокосте отталкивают меня от попыток оправдать отношение Бога к Человеку. Если существует Бог, имеющий по отношению к человеку особые планы, то Он очень сильно постарался запрятать свою заботу о нас как можно дальше. Мне кажется невежливым, если не сказать неучтивым, возносить такому Богу свои молитвы.

Далеко не все ученые согласятся с моим мрачным взглядом на окончательные законы. Я не знаю никого, кто бы прямо заявлял, что есть научные свидетельства существования Бога, но ряд ученых настаивает на особом статусе разумной жизни в природе. Конечно, всем понятно, что на практике биология и психология должны изучаться по‑особому, используя свой язык, отличный от языка физики элементарных частиц, но это не признак какого‑то особого статуса жизни или разума; это же верно для химии или гидродинамики. Если, с другой стороны, мы обнаружим в окончательных законах, в точке соединения всех стрелок объяснений особую роль разумной жизни, мы с полным основанием сможем заключить, что Создатель, установивший эти законы, был как‑то особенно заинтересован в нашем существовании.

Джон Уилер поражен тем фактом, что, согласно стандартной копенгагенской интерпретации квантовой механики, невозможно точно сказать, что физическая система обладает определенными значениями таких величин, как координата, энергия или импульс, пока эти величины не измерены прибором какого‑то наблюдателя. С точки зрения Уилера, чтобы придать смысл квантовой механике, необходим какой‑то тип разумной жизни. Недавно Уилер пошел еще дальше и высказал гипотезу, что разумная жизнь не только обязана была появиться, но должна продолжать распространяться на всю Вселенную, чтобы рано или поздно каждый бит информации о физическом состоянии Вселенной стал бы доступен наблюдению. Выводы Уилера представляются мне хорошим примером тех опасностей, которые связаны со слишком серьезным отношением к доктрине позитивизма, утверждающей, что наука должна иметь дело только с теми вещами, которые можно наблюдать. Другие физики, и я в том числе, предпочитают иную, реалистическую точку зрения на квантовую механику, основанную на понятии волновой функции, описывающей не только атомы и молекулы, но и лаборатории, и наблюдателей в них, причем законы, которыми управляется эта функция, не зависят от существования наблюдателей.

Некоторые ученые придают особый смысл тому факту, что значения ряда фундаментальных констант кажутся специально подобранными для того, чтобы во Вселенной могла возникнуть разумная жизнь. До конца не ясно, есть ли что‑то содержательное в этих наблюдениях, но даже если это так, отсюда нельзя сделать вывод о действии Божественной силы. В ряде современных космологических теорий так называемые константы природы (например, массы элементарных частиц) на самом деле меняются от места к месту или от одного момента времени к другому, более того, от одного слагаемого в волновой функции Вселенной к другому. Если это было бы так, то, как мы видели, все ученые, изучающие законы природы, должны были бы жить в той части Вселенной, где константы природы имеют значения, приемлемые для эволюции разумной жизни.

Приведем аналогию. Пусть существует планета Земля‑штрих, во всех отношениях совпадающая с нашей Землей, кроме одного: человечество на этой планете развило физику, ничего не зная об астрономии. (Можно представить, например, что поверхность Земли‑штрих всегда затянута облаками.) Студенты Земли‑штрих, как и студенты Земли, имеют на обложках своих учебников таблицы физических констант. В них перечислены скорость света, масса электрона и т.д., а также еще одна «фундаментальная» константа, равная 1,99 калории в минуту на один квадратный сантиметр, выражающая количество энергии, достигающей поверхности Земли‑штрих от некоторого неизвестного источника. На Земле эта константа называется солнечной постоянной, так как мы знаем, что эта энергия приходит от Солнца, но на Земле‑штрих никто не может сказать, откуда берется эта энергия, и почему она имеет такое численное значение. Некоторые физики на Земле‑штрих могут заметить, что наблюдаемое значение этой константы удивительным образом приспособлено к возникновению жизни. Если бы Земля‑штрих получала много больше или много меньше энергии, чем 2 калории в минуту на один квадратный сантиметр, то вода в океанах была бы либо льдом, либо паром, так что на Земле‑штрих не было бы воды или другой подходящей среды, в которой могла бы развиться жизнь. Физик мог бы прийти к выводу, что эта константа – 1,99 калории в минуту на 1 см2– специально подобрана Богом для блага человечества. Более скептически настроенные физики на Земле‑штрих доказывали бы, что все константы когда‑нибудь найдут свое объяснение в окончательных законах физики, и что их приемлемость для существования жизни – просто случайность. На самом деле, и те, и другие были бы не правы. Когда обитатели Земли‑штрих обрели бы наконец знание астрономии, они поняли бы, что их планета получает 1,99 калории в минуту на 1 см2просто потому, что она, как и Земля, находится на расстоянии 150 миллионов километров от Солнца, излучающего за минуту 5,6 · 1015калорий тепловой энергии. Они поняли бы также, что есть и другие планеты, находящиеся ближе к Солнцу, на которых слишком жарко для существования жизни, и есть еще больше далеких планет, на которых слишком холодно, чтобы там могла существовать жизнь. Несомненно, существует еще бесчисленное количество планет, вращающихся вокруг других звезд, и только малая часть из них приспособлена для жизни. Узнав достаточно об астрономии физики‑скептики на Земле‑штрих поняли бы наконец, что они живут в мире, получающем примерно 2 калории в минуту на 1 см2, просто потому, что ни в одном другом мире они не могли бы жить. Мы в нашей части Вселенной напоминаем жителей Земли‑штрих до того, как они открыли астрономию, только вместо других планет от нас скрыты другие части Вселенной.

Далее. Чем больше фундаментальных физических принципов мы открываем, тем меньшее отношение они к нам имеют. Например, в начале 1920‑х гг. считалось, что единственными элементарными частицами являются электрон и протон, из которых состоим мы сами и весь мир. Когда были обнаружены новые частицы, скажем, нейтрон, то сначала думали, что они составлены из электронов и протонов. Сегодня все сильно изменилось. Мы совсем не уверены в том, что понимаем, что значит элементарность частицы, но уже выучили важный урок, что вхождение частиц в состав обычного вещества не имеет никакого отношения к тому, насколько они фундаментальны. Почти все частицы, чьи поля содержатся в уравнениях современной стандартной модели частиц и взаимодействий, так быстро распадаются, что они не могут находится в составе обычного вещества и оказывать какое бы то ни было влияние на человеческую жизнь. Электроны являются существенной частью окружающего нас мира, а частицы, называемые мюонами и тау‑лептонами, едва ли имеют отношение к нашим жизням, но в том виде, как это выглядит в наших теориях, электроны ни в коей мере не кажутся более фундаментальными, чем мюоны или тау‑лептоны. Можно высказать более общее утверждение: никто еще не обнаружил никакой корреляции между чем бы то ни было, что важно для нас, и тем, что важно для фундаментальных физических законов.

Конечно, большинство людей узнает что‑то о существовании Бога не из научных открытий. Джон Полкингхорн красноречиво доказывал, что теология «может найти свое место в той же части человеческого опыта, что и наука»[261], и что она основана на религиозном опыте вроде откровения примерно так же, как наука основана на эксперименте и наблюдении. Те люди, которые думают, что обладают собственным религиозным опытом, должны сами для себя оценить качество этого опыта. Но большинство последователей мировых религий опираются не на собственный религиозный опыт, а на откровения, предположительно пережитые другими. Может показаться, что это не слишком отличается от позиции физика‑теоретика, опирающегося в работе на эксперименты, проделанные другими. Но есть очень важное отличие. Взгляды тысяч отдельных физиков складываются в удовлетворительное (хотя и неполное) общепринятое понимание физической реальности. Напротив, утверждения о Боге или о чем‑то подобном, выводимые из религиозного откровения, совершенно не согласуются друг с другом. После тысяч лет теологического анализа мы не приблизились ни на шаг к единому пониманию уроков религиозного откровения.

Есть и еще одно отличие религиозного откровения от научного эксперимента. Уроки религиозного опыта могут приносить глубокое удовлетворение, по контрасту с абстрактным и внеличным взглядом на мир, получаемым от научного исследования. В противоположность науке, религиозный опыт может придать смысл нашим жизням, сделать нас участниками великой космической драмы греха и искупления и предложить нам обещание существования после смерти. Именно по этим причинам я вижу в уроках религиозного опыта несмываемую печать стремления принять желаемое за действительное.

В моей книге «Первые три минуты», изданной в 1977 г., я был настолько неосторожен, что бросил фразу: «Чем более постижимой представляется Вселенная, тем более она кажется бессмысленной». Я имел в виду не то, что наука учит нас, будто Вселенная бессмысленна, а то, что сама Вселенная не указывает нам на смысл своего существования. Я поспешил добавить, что мы сами можем придать смысл своей жизни, в том числе, сделав попытку понять Вселенную. Но слово было сказано, и эта фраза с тех пор меня преследует[262]. Недавно Алан Лайтман и Роберта Бравер опубликовали интервью с двадцатью семью космологами и физиками[263], почти каждому из которых в конце задавался вопрос, что они думают об этом замечании. С небольшими отклонениями десять из интервьюируемых согласились со мной, а тринадцать – нет. Однако из этих тринадцати трое выразили несогласие, так как вообще не поняли, почему кто‑то должен ожидать , что во Вселенной должен быть смысл. Гарвардский астроном Маргарет Геллер задает вопрос: «Почему у нее должен быть смысл? Какой смысл? Я всегда удивлялась этому высказыванию». Астрофизик из Принстона Джим Пиблс замечает: «Меня заставляют поверить, что мы все – плавающие обломки какого‑то кораблекрушения». (Пиблс также высказал гипотезу, что в тот день, когда я это писал, у меня было плохое настроение.) Еще один Принстонский астрофизик, Эдвин Тернер, согласился со мной, но предположил, что я сделал это замечание, чтобы подразнить читателя. Больше всего мне нравится ответ моего коллеги по Техасскому университету астронома Жерара де Вокулера. Он сказал, что мое замечание кажется ему «ностальгическим». Конечно, он прав – это ностальгия по миру, в котором небеса возглашают славу Божию.

Около полутора веков назад Мэтью Арнольд увидел в океанском отливе прекрасную метафору, описывающую угасание религиозного чувства, и услышал в звуках воды «ноту печали»[264]. Было бы замечательно обнаружить в законах природы план, заготовленный заинтересованным Создателем, в котором человеческим существам отводилась бы специальная роль. Я испытываю печаль, когда высказываю сомнение в этом. Некоторые из моих ученых коллег утверждают, что познание природы дает им полное духовное удовлетворение, которое другие люди традиционно находят в вере в заинтересованного Бога. Возможно, что кто‑то действительно так чувствует. Я – нет. И мне не поможет, если я по примеру Эйнштейна отождествлю законы природы с каким‑то отстраненным и незаинтересованным Богом. Чем больше мы уточняем наши представления о Боге, чтобы сделать это понятие приемлемым, тем больше оно кажется бессмысленным.

Вероятно, я кажусь белой вороной среди современных ученых, когда проявляю интерес к подобным вещам. В тех редких случаях, когда за обедом или за чаем заходит разговор о религии, самая сильная реакция, которую выражает большинство моих коллег‑физиков, увидев, что кто‑то все еще способен серьезно обсуждать эти проблемы, – это тихое удивление и улыбка. Многие физики сохраняют номинальное уважение к вере своих родителей, как к форме этнической идентификации, а также как к обряду, полезному при свадьбах и похоронах, но мало кто из них уделяет внимание теологическим проблемам. Я знаком с двумя специалистами по общей теории относительности, являющимися набожными католиками, несколькими физиками‑теоретиками, благоговейно относящимися к иудаизму, одним православным экспериментатором, одним теоретиком – убежденным приверженцем ислама и математиком, получающим указания свыше в англиканской церкви. Нет сомнения, что есть и много других глубоко религиозных физиков, с которыми я незнаком, или которые скрывают свои религиозные убеждения. Но, насколько я могу судить по собственным впечатлениям, большинство физиков сегодня интересуются религией недостаточно даже для того, чтобы их можно было считать действующими атеистами.

В определенном смысле религиозные либералы еще дальше отошли от ученых по духу, чем фундаменталисты и другие религиозные консерваторы. Последние, по крайней мере, утверждают, как и ученые, что они верят в то, во что они верят, потому что это правильно, а не потому что от этого становится легче и счастливее жить. В наши дни многие либералы от религии полагают, что разные люди могут верить в разные взаимоисключающие вещи, и все они правы, если только их верования «работают на них». Один верит в перерождение душ, другой – в рай и ад, третий – в то, что душа исчезает после смерти; и ни про одного из них нельзя сказать, что он не прав, до тех пор, пока каждый получает духовное удовлетворение от своих верований. Как говорила Сьюзен Зонтаг, нас окружает «неопределенная набожность» [265]. Все это напоминает мне историю про Бертрана Рассела. В 1918 г. его осудили на тюремное заключение за антивоенную деятельность. Следуя принятым правилам, тюремщик спросил Рассела о его религии. Рассел ответил, что он агностик.

Тюремщик был немного озадачен, затем просиял и сказал: «Я понял. В конце концов все мы поклоняемся одному Богу, не так ли?»

Как‑то Вольфганга Паули спросили, не кажется ли ему, что одна запутанная научная статья просто ошибочна. Он ответил, что это определение слишком мягко – статья даже не ошибочна. Я полагаю, что религиозные консерваторы ошибаются в том, во что они верят, но по крайней мере они не забыли, что вообще означает вера во что‑нибудь. Религиозные либералы, по‑моему, даже не ошибаются.

Можно часто услышать, что в религии важна не теология, а то как религия помогает нам жить. Удивительно, что проблемы существования Бога, его природа, понятия благодати и греха, ада и рая, – все это оказывается неважным! Позволю высказать предположение, что люди считают богословские проблемы выбранной ими религии не столь важными, потому что не могут заставить себя признать, что они во все это верят. Однако на протяжении веков и сейчас в разных частях света люди разделяют те или иные богословские теории и считают их для себя очень важными.

Конечно, кого‑то отталкивает интеллектуальная распущенность религиозного либерализма, но все же главная опасность таится в консервативной догматической религии. Безусловно, она также внесла огромный вклад в формирование моральных принципов и в искусство. Здесь не место обсуждать, как нам уравновесить на чашах весов этот вклад с одной стороны и долгую жестокую историю крестовых походов, джихада, инквизиции и погромов с другой. Мне хотелось бы только подчеркнуть, что подводя этот баланс, неправильно считать, что религиозные гонения и священные войны являются извращениями истинной веры. Такое предположение кажется мне симптомом широко распространенного отношения к религии, в котором соединяются глубокое уважение вместе с глубоким отсутствием интереса. Многие великие мировые религии учат, что Бог требует безоговорочной веры и определенного почитания. Неудивительно, что некоторые люди, воспринимающие всерьез эти учения, будут искренне считать божественные указания несравненно более важными, чем любые мирские добродетели вроде терпимости, сострадания или разума.

Темные силы религиозного фанатизма набирают силу по всей Азии и Африке, и даже в светских государствах Запада разум и терпимость подвергаются опасности. Историк Хью Тревор‑Ропер заметил, что распространение духа науки в XVII и XVIII вв. привело в конце концов к прекращению сжигания ведьм[266]. Возможно, нам следует опять обратиться к науке, чтобы сохранить мир разума. И главную роль здесь может сыграть не уверенность в научных знаниях, а их неопределенность . Когда мы видим ученых, все время меняющих свои взгляды на явления, которые можно изучать непосредственно в лабораторных экспериментах, как можем мы относиться серьезно к притязаниям религиозной традиции или священных книг на какое‑то знание о вещах, недоступных человеческому опыту?

Конечно, наука внесла свой вклад в мировые проблемы, но, главным образом, дав нам средства для убийства друг друга, но не повод. Когда для оправдания совершаемых ужасов привлекали видных ученых, речь всегда шла о научных извращениях, вроде нацистского расизма или евгеники. Как сказал Карл Поппер, «достаточно очевидно, что не рационализм, а иррационализм ответственен за все жестокости национализма и агрессивность как до, так и после крестовых походов, однако я не знаю ни одной войны, которая велась бы с “научной” целью и была бы инспирирована учеными»[267].

К сожалению, я не думаю, что можно с помощью рациональных аргументов овладеть научным способом мышления. Давно еще Дэвид Юм заметил[268], что, взывая к нашему прошлому опыту успешного использования научного мышления, мы предполагаем справедливость того самого способа мышления, который пытаемся проверить. Точно так же все логические аргументы могут быть опрокинуты простым отказом логически мыслить. Поэтому невозможно просто отбросить вопрос, почему, если мы не находим в законах природы желанного душевного покоя, мы не должны искать его где‑нибудь еще – в том или ином духовном авторитете или, наоборот, в смене веры?

Решение о том, верить или не верить, не совсем полностью находится в наших руках. Может быть, я чувствовал бы себя счастливее и оказался бы лучше воспитан, если бы думал, что происхожу от китайских императоров, но никаким усилием воли я не могу заставить себя поверить в это, точно так же, как не могу заставить остановиться свое сердце. Иногда кажется, что многие люди способны осуществлять контроль над тем, во что они верят, и сами выбирают, какая вера принесет им больше счастья или удачи. Самое интересное описание того, как этот контроль может действовать, можно встретить в романе Джорджа Оруэлла «1984». Герой романа, Уинстон Смит, записывает в своем дневнике, что «свобода означает свободу говорить, что два плюс два равно четырем». Инквизитор О’Брайен воспринимает это как вызов и ставит задачу заставить Смита изменить свое мнение. Под пыткой Смит, конечно, готов сказать, что два плюс два равно пяти, но не к этому стремится О’Брайен. В конце концов, боль становится такой невыносимой, что с целью избавиться от нее Смит заставляет себя поверить, что два плюс два равно пяти. На время О’Брайен удовлетворен, и пытка прекращается. Во многом похожим образом боль от столкновения с перспективой нашей собственной смерти и смерти тех, кого мы любим, заставляет нас выбрать ту веру, которая смягчает эту боль. Если мы способны таким образом настроить наши верования, то почему бы этим не воспользоваться?

Я не вижу никаких научных или логических оснований не искать утешения путем настройки наших верований: такие основания связаны только с моралью или чувством чести. Что бы мы подумали о человеке, который сумел убедить себя, что он обязательно должен выиграть в лотерею, поскольку страшно нуждается в деньгах? Кто‑то может поддержать его большие ожидания, но большинство будет думать, что этот человек не оправдывает своей роли взрослого, рационально мыслящего человеческого существа, способного трезво глядеть в лицо действительности. Подобно тому, как каждый из нас с возрастом учится преодолевать искушение серьезно относиться к таким вещам, как лотереи, все мы должны постепенно понять, что мы не являемся звездами в какой‑то великой космической драме.

Тем не менее, я ни в коем случае не думаю, что наука когда‑либо подарит такое же утешение перед лицом смерти, какое дает вера. Наилучшее известное мне изложение этого экзистенциального выбора можно найти в «Церковной истории Англии»[269], написанной Бедой Достопочтенным примерно в 700 г. н.э. Беда рассказывает, как король Англии Эдвин Нортумбрийский собрал в 627 г. совет, чтобы решить, какую религию принять подданным его страны, и приводит следующую речь одного из приближенных короля:

«Ваше Величество, когда мы сравниваем теперешнюю жизнь человека на Земле с той, о которой мы ничего не знаем, она представляется мне быстрым полетом одинокого воробушка через банкетный зал, где Вы пируете зимним днем вместе со своими танами и советниками. Посередине уютно горит огонь, обогревающий зал, а снаружи бушует ветер и валит снег. Этот воробушек влетает в одну дверь зала и вылетает в противоположную. Пока он внутри, он в безопасности от зимних штормов, но после нескольких мгновений уюта он исчезает из виду в снежных вихрях, из которых только что появился. Точно так же и человек ненадолго появляется на Земле. Но о том, что предшествовало его жизни, или что будет после нее, мы не знаем ничего…»

 

Почти непреодолимо искушение поверить вместе с Бедой и королем Эдвином, что за стенами банкетного зала должно быть еще что‑то для нас. Честь противостоять этому искушению – всего лишь крохотный противовес утешению в вере, но и само это противостояние иногда приносит удовлетворение.

Глава XII. В округе Эллис

 

Мамы, не давайте своим детям вырастать ковбоями,

 

Не разрешайте им бренчать на гитарах и водить старые грузовики. Пусть лучше из них выйдут доктора и адвокаты.

 

Эд и Петси Брюс

 

Округ Эллис штата Техас находится в сердце региона, который когда‑то был величайшей областью, где выращивали хлопок, на планете. В главном городе округа Ваксахачи нетрудно заметить следы былого хлопкового процветания. В центре города возвышается построенное в 1895 г. громадное здание из розового гранита с высокой часовой башней – помещение окружной администрации. От центральной площади веером расходятся несколько улиц, застроенных прелестными домами в викторианском стиле, выглядящими так, будто Браттл Стрит перенеслась из Кембриджа на юго‑запад. Но сейчас округ сильно обеднел. Хотя в небольшом количестве хлопок выращивается и сейчас, так же как пшеница и кукуруза, но цены уже не те. В сорока минутах езды по шоссе к северу находится Даллас, и несколько преуспевающих жителей этого города переселились в свое время в Ваксахачи в поиске сельской тишины и покоя. Однако быстро растущие в Далласе и Форт Уорте авиационная промышленность и производство компьютеров до округа Эллис не добрались. В 1988 г. число безработных в Ваксахачи составляло 7 %. Неудивительно, что в администрации округа поднялся большой переполох, когда 10 ноября 1988 г. было объявлено, что округ Эллис избран местом строительства самого большого и самого дорогого научного прибора в мире – Сверхпроводящего суперколлайдера (ССК).

Проектирование ССК началось за шесть лет до этого. В то время министерство энергетики занималось хлопотным проектом под названием ИЗАБЕЛЛА, который уже находился в стадии строительства в Брукхейвенской национальной лаборатории на Лонг Айленде. Предполагалось, что ускоритель ИЗАБЕЛЛА станет наследником существующего ускорителя в Лаборатории им. Ферми (Фермилабе) под Чикаго, в качестве ведущего американского центра экспериментальных исследований по физике элементарных частиц. Начавшись в 1978 г., строительство ускорителя ИЗАБЕЛЛА сразу же затормозилось на два года из‑за проблем с конструкцией сверхпроводящих магнитов, которые должны были удерживать на орбите сфокусированный протонный пучок. Но была и другая, более глубокая проблема, связанная с этим проектом. Хотя после окончания строительства этот ускоритель стал бы самым мощным в мире, все же его мощности не хватало на то, чтобы ответить на вопрос, ответ на который страстно желали получить все физики: как нарушается симметрия между слабым и электромагнитным взаимодействиями?

Описание слабых и электромагнитных взаимодействий в рамках стандартной модели элементарных частиц основано на точной  симметрии, подчиняясь которой эти взаимодействия входят в уравнения теории. Однако, как мы видели, эта симметрия отсутствует в решениях уравнений, т.е. свойствах самих частиц и взаимодействий. Любая версия стандартной модели, допускающая такое нарушение симметрии, должна обладать свойствами, которые еще не обнаружены экспериментально – должны существовать либо новые слабовзаимодействующие частицы, называемые хиггсовскими частицами , либо новые сверхсильные взаимодействия. Мы не знаем, какой из вариантов реально осуществляется в природе, поэтому такая неопределенность препятствует продвижению за рамки стандартной модели.

Единственным надежным способом разрешения этого вопроса является эксперимент, в котором есть возможность потратить триллионы электрон‑вольт, чтобы породить либо хиггсовские частицы, либо массивные частицы, удерживаемые вместе сверхсильными взаимодействиями. Оказывается, что для этого необходимо довести полную энергию пары сталкивающихся протонов до 40 триллионов эВ, так как энергия каждого протона делится между входящими в его состав кварками и глюонами, и только примерно одна сороковая доля полной энергии может быть использована для рождения новых частиц в процессе соударения любого кварка или глюона из одного протона с кварком или глюоном из другого. Однако недостаточно просто выстрелить пучком протонов энергией 40 триллионов эВ по неподвижной мишени, так как тогда почти вся энергия налетающих протонов будет растрачена на отдачу протонов мишени. Чтобы надежно решить вопрос о нарушении электрослабой симметрии, необходимы два пучка протонов энергией 20 триллионов эВ, которые сталкивались бы лоб в лоб, так что суммарный импульс двух столкнувшихся протонов был бы равен нулю и не было бы никаких потерь энергии на отдачу. К счастью, можно быть уверенными в том, что ускоритель, на котором интенсивные встречные пучки протонов ускоряются до энергии 20 триллионов эВ, способен разрешить проблему нарушения электрослабой симметрии, т.е. на нем будет обнаружена либо хиггсовская частица, либо свидетельства новых сильных взаимодействий.

В 1982 г. среди физиков – теоретиков и экспериментаторов – начала бродить идея, что проект ИЗАБЕЛЛА должен быть отброшен за ненадобностью, и его следует заменить постройкой значительно более мощного нового ускорителя, в опытах на котором можно было бы разрешить проблему нарушения электрослабой симметрии. Тем летом состоялось первое заседание неофициальной рабочей группы Американского физического общества, на котором впервые детально рассматривался проект ускорителя на сталкивающихся протонных пучках с энергиями по 20 триллионов эВ, т.е. в пятьдесят раз больше, чем планировалось в проекте ИЗАБЕЛЛА. В феврале следующего года подкомитет Консультативного комитета по физике высоких энергий Министерства энергетики под председательством Стенли Вожички начал серию встреч, на которых обсуждались параметры ускорителя нового поколения. Члены подкомитета встретились в Вашингтоне с советником президента по науке Джеем Кейвортом и получили от него твердые заверения, что администрация благожелательно отнесется к новому большому проекту.

Подкомитет Вожички провел свое решающее заседание в период с 29 июня по 1 июля 1983 г. в Циклотронной лаборатории им. Невиса Колумбийского университета в округе Вестчестер. Приглашенные физики единогласно рекомендовали построить ускоритель, который мог бы ускорять встречные пучки протонов до энергий 10–20 триллионов эВ. Само по себе это голосование не должно было привлечь особое внимание. Ученые в любой области высказывают рекомендации по созданию нового оборудования для своих исследований. Значительно важнее было то, что десятью голосами против семи было рекомендовано прекратить работы по проекту ИЗАБЕЛЛА. Это было невероятно трудное решение, против которого яростно возражал директор Брукхейвена Ник Самиос. (Позднее Самиос назвал это голосование «одним из самых тупых решений, когда‑либо принятых в физике высоких энергий»[270].) Решение не только подчеркнуло поддержку подкомитетом проекта нового большого ускорителя, оно политически чрезвычайно затруднило для Министерства энергетики обращение к конгрессу с просьбой о продолжении финансирования проекта ИЗАБЕЛЛА, а если этот проект приостанавливался и не заменялся никаким другим, то получалось, что министерство энергетики вообще остается без проектов строительства установок по физике высоких энергий.

Десятью днями спустя рекомендации подкомитета Вожички были единогласно поддержаны головным консультативным комитетом по физике высоких энергий министерства энергетики. Именно в это время предлагаемый новый ускоритель получил свое теперешнее имя: Сверхпроводящий СуперКоллайдер (ССК) (по‑англ. Superconducting Supercollider, SSC. – Прим. перев. ). 11 августа 1983 г. министерство энергетики поручило консультативному комитету по физике высоких энергий наметить план проведения исследовательских и конструкторских работ, необходимых для проекта ССК, а 16 ноября 1983 г. министр энергетики Дональд Ходель объявил решение министерства о прекращении работы над проектом ИЗАБЕЛЛА[271] и обратился к соответствующим комитетам палаты представителей и сената за разрешением направить выделенные на проект ИЗАБЕЛЛА средства на новый проект ССК.

Поиск механизма нарушения электрослабой симметрии безусловно был не единственным доводом в пользу ССК. Обычно при строительстве новых ускорителей типа находящихся в ЦЕРНе или Фермилабе всегда ожидается, что при переходе к более высокому уровню энергий будут обнаружены новые выдающиеся явления. Такие ожидания почти всегда оправдывались. Например, при строительстве старого протонного синхротрона в ЦЕРНе не было никаких определенных идей относительно того, что на нем будет открыто. Безусловно, никто не предвидел, что эксперименты с полученными на этом ускорителе нейтринными пучками приведут к открытию в 1973 г. слабых взаимодействий нейтральных токов, подтвердивших единую теорию электрослабых взаимодействий. Сегодняшние большие ускорители являются потомками циклотронов, построенных в начале 1930‑х гг. в Беркли Эрнстом Лоуренсом с целью ускорения протонов до столь высоких энергий, чтобы они смогли преодолеть электрическое отталкивание протонов атомного ядра. При этом у Лоуренса не было никаких идей о том, что может быть обнаружено, когда протоны проникнут вглубь ядра. Бывает и так, что определенное открытие анонсируется заранее. Например, построенный в конце 1950‑х гг. бэватрон в Беркли был специально рассчитан на такую энергию (примерно 6 ГэВ), чтобы появилась возможность рождать антипротоны – античастицы протонов, входящих в состав всех обычных атомных ядер. Работающий в наши дни электрон‑позитронный коллайдер в ЦЕРНе был построен в первую очередь так, чтобы энергия пучков была достаточной для рождения очень большого количества Z ‑частиц, которые затем использовались для того, чтобы подвергнуть теорию электрослабых взаимодействий жесткой экспериментальной проверке. Но даже тогда, когда постройка нового ускорителя мотивируется какой‑то определенной задачей, наиболее важные открытия на нем происходят совершенно неожиданно. Именно так было с бэватроном в Беркли. Антипротоны на нем действительно были получены, но самым главным достижением стало рождение большого числа неожиданных новых сильновзаимодействующих частиц. Точно так же, с самого начала подчеркивалось, что эксперименты на Суперколлайдере могут привести к значительно более важным открытиям, чем подтверждение механизма нарушения электрослабой симметрии.

Опыты на ускорителях сверхвысоких энергий типа ССК могут даже решить самую важную проблему, с которой столкнулась современная физика, – проблему недостающей темной материи. Нам известно, что большая часть массы галактик, и еще большая часть массы скоплений галактик является темной, т.е. не состоит из светящихся звезд типа Солнца. Еще больше темной материи требуется для того, чтобы объяснить скорость расширения Вселенной в рамках популярных космологических теорий. Такой избыток темной материи не может существовать в форме обычных атомов. Если бы это было так, то существование дополнительного большого числа протонов, нейтронов и электронов повлияло бы на расчеты распространенности легких элементов, образованных в первые несколько минут расширения Вселенной, так что результаты этих расчетов перестали бы согласовываться с наблюдениями.

Так что же такое темная материя? В течение многих лет физики строят предположения о существовании экзотических частиц того или иного сорта, из которых могла бы состоять темная материя. Однако до сих пор эти гипотезы не привели к определенным результатам. Если в экспериментах на ускорителе будет обнаружен новый тип долгоживущих частиц, то, измерив их массу и взаимодействия, мы сумеем вычислить, сколько таких частиц осталось после Большого взрыва, и решить, могут ли они составлять всю или только часть темной материи во Вселенной.

Недавно эти вопросы обострились в результате наблюдений, сделанных спутником СОВЕ (Cosmic Background Explorer). Помещенные на этом спутнике чувствительные приемники микроволнового излучения обнаружили следы ничтожных различий температуры этого излучения при переходе от одной части неба к другой. Эти различия сохранились от эпохи, когда возраст Вселенной был равен всего тремстам тысячам лет. Считается, что такие неоднородности температуры возникли за счет влияния гравитационных полей, созданных слегка неоднородным распределением материи в ту эпоху. Момент времени через триста тысяч лет после Большого взрыва имел решающее значение в истории Вселенной. Она впервые стала прозрачной для излучения, и обычно считается, что неоднородности в распределении материи начали после этого момента собираться в комки под действием собственного притяжения, что привело в конце концов к образованию тех галактик, которые мы видим на небе. Однако неоднородности в распределении материи, вытекавшие из результатов измерений СОВЕ, не соответствуют молодым  галактикам. Дело в том, что спутник СОВЕ изучал только нерегулярности очень большого размера, значительно превышавшего тот, который имели сегодняшние галактики в момент времени через триста тысяч лет после Большого взрыва.

Если экстраполировать то, что наблюдал СОВЕ, к много меньшим размерам ранних галактик, и вычислить степень неоднородности вещества на этих сравнительно малых масштабах, то мы столкнемся с проблемой: неоднородности размером с теперешнюю галактику были бы слишком незначительны в эпоху через триста тысяч лет после начала, чтобы вырасти под действием собственной гравитации в сегодняшние галактики. Один из способов преодолеть возникшую проблему заключается в том, чтобы предположить, что неоднородности галактического размера начали гравитационное сжатие уже в первые триста тысяч лет, так что экстраполяция того, что наблюдает СОВЕ, к много меньшим размерам галактик неверна. Однако это невозможно, если вещество Вселенной состоит главным образом из обычных протонов, нейтронов и электронов, так как неоднородности такой обычной материи не могут испытать существенный рост, пока Вселенная не станет прозрачной для излучения. Просто, в более ранние моменты времени любой комок вещества будет разнесен на куски давлением собственного излучения. С другой стороны, экзотическая темная материя[272], состоящая из электрически нейтральных частиц, стала бы прозрачной для излучения намного раньше, и поэтому начала бы гравитационное сжатие в эпоху намного ближе к началу, образуя значительно более сильные неоднородности галактических масштабов, чем те, которые вытекают из экстраполяции данных СОВЕ, и, вероятно, достаточные для того, чтобы вырасти в сегодняшние галактики. Открытие частиц темной материи на ССК подтвердило бы это предположение, пролив, тем самым, свет на раннюю историю Вселенной.

Существует множество других новых явлений, которые могли бы быть исследованы на ускорителях типа ССК: частицы, из которых состоят кварки внутри протонов, любые из множества суперпартнеров известных частиц, требуемых теорией суперсимметрии, новые типы взаимодействий, связанные с новыми внутренними симметриями и т.п. Мы не знаем, существуют ли перечисленные частицы и явления, и если они существуют, могут ли они быть открыты на ССК. Поэтому ободряющим является уже то, что мы заранее знаем по крайней мере об одном открытии огромного значения, которое можно совершить на ССК, – установлении механизма нарушения электрослабой симметрии.

После того, как министерство энергетики приняло решение о строительстве ССК, несколько лет ушло на планирование и проектирование, прежде чем смогло начаться само строительство. На основании давнего опыта известно, что хотя такое предприятие и спонсируется федеральным правительством, руководство им лучше всего осуществляется частными агентствами, поэтому министерство энергетики передало управление исследовательскими и конструкторскими работами университетской исследовательской ассоциации, некоммерческому консорциуму из шестидесяти девяти университетов, уже руководившему в свое время постройкой Лаборатории им. Ферми. Ассоциация в свою очередь привлекла университетских специалистов и ученых из промышленности в совет наблюдателей за постройкой ССК. Этот совет передал полномочия по детальной разработке конструкции ускорителя центральной конструкторской группе в Беркли, которую возглавил Маури Тайгнер из Корнеллского университета. К апрелю 1986 г. центральная конструкторская группа завершила проектирование. Ускоритель должен был представлять собой туннель диаметром три метра, образующий овал длиной 83 км, в котором должны были ускоряться летящие в противоположных направлениях два тоненьких протонных пучка энергией 20 триллионов электрон‑вольт. Протоны удерживались на своей траектории 3 840 отклоняющими магнитами (длиной 17 м каждый) и фокусировались другими 888 магнитами. В целом, на все магниты должно было уйти 41 500 т железа и 19 400 километров сверхпроводящего кабеля. Они должны были охлаждаться 2 миллионами литров жидкого гелия.

30 января 1987 г. проект был одобрен Белым домом. В апреле министерство энергетики приступило к поиску места строительства, обратившись с просьбой к заинтересованным штатам высказывать свои предложения. К установленному сроку, 2 сентября 1987 г., оно получило сорок три предложения (общее число документов весило около 3 т) от штатов, желавших осуществить проект ССК на своей территории. Комитет, назначенный национальными академиями науки и техники, уменьшил число заявок до семи «лучше всего обоснованных» мест, и, наконец, 10 ноября 1988 г. министр энергетики объявил решение министерства: ССК будет построен в округе Эллис, Техас.

Отчасти, причина этого выбора лежит глубоко под поверхностью Техаса. На север от Остина до Далласа тянется геологическая формация возрастом 84 млн лет, известная как Остинское меловое отложение. Оно возникло из осадочных пород на дне моря, покрывавшего большую часть Техаса в меловом периоде. Мел непроницаем для воды, достаточно мягок для рытья, и в то же время, достаточно тверд для того, чтобы не было необходимости дополнительно укреплять стены туннеля. Трудно было бы найти более удачный материал, в котором предстояло прорыть туннель ССК.

Тем временем только разворачивалась борьба за финансирование ССК. Критическим для такого рода проектов является первое ассигнование на строительство. До этого момента проект состоит только из исследовательских и конструкторских работ, которые могут быть остановлены так же легко, как были начаты. Но как только начинается само строительство, остановить его политически неудобно, так как остановка означает молчаливое признание, что все деньги, уже потраченные на строительство, выброшены на ветер. В феврале 1988 г. президент Рейган запросил конгресс о выделении 363 млн долларов на строительство, но конгресс выделил только 100 млн и специально позволил тратить эти средства только на разработку и конструирование, но не на строительство.

Проект ССК продолжался так, как будто его будущее было обеспечено. В январе 1989 г. была избрана техническая администрация, и директором лаборатории ССК стал Рой Швиттерс. Этот бородатый, но сравнительно молодой физик‑экспериментатор, которому исполнилось тогда 44 года, уже доказал свои способности управленца, возглавляя главную экспериментальную группу на ведущей в США установке по физике высоких энергий – коллайдере Тэватрон в Лаборатории им. Ферми. 7 сентября 1989 г. появились хорошие новости: сенатский комитет согласился ассигновать 225 млн долларов в 1990 бюджетном году причем 135 млн предназначалось на строительство. Проект ССК наконец‑то выходил из стадии исследований и конструирования.

Но борьба не закончилась. Каждый год администрация ССК ставила перед конгрессом вопрос о финансировании, и каждый год произносились одни и те же аргументы за и против[273]. Только очень наивный физик удивился бы, насколько далеки эти споры от нарушения электрослабой симметрии или окончательных законов природы. Но только очень циничный физик не был бы огорчен самим фактом этих споров.

Единственный самый сильный фактор, заставлявший политиков поддерживать или отвергать ССК, состоял в сиюминутных экономических интересах их избирателей. Гроза проекта в конгрессе, член палаты представителей Дон Риттер сравнил ССК с «казенным пирогом», который некоторые влиятельные конгрессмены поддерживают только из политических соображений. Прежде чем было выбрано место строительства ССК, со стороны тех, кто надеялся, что выбор падет на его штат, была широкая поддержка проекта. Когда я в 1987 г. выступал в поддержку проекта перед сенатским комитетом, один из сенаторов заметил мне, что сейчас ССК поддерживают около сотни сенаторов, но после того, как будет объявлено место строительства, их останется только два. Конечно, поддержка сократилась, однако оценка сенатора была чересчур пессимистичной. Возможно, это связано с тем, что компании по всей стране получили контракты на компоненты ССК, но я полагаю, что это отражает и определенное понимание важности проекта как такового.

Многие оппоненты ССК указывают на срочную необходимость сократить дефицит федерального бюджета. Это было постоянной темой выступлений сенатора Дейла Бамперса из Арканзаса, главного оппонента ССК в сенате. Я могу понять эту озабоченность, но не понимаю, почему начинать сокращение дефицита нужно именно с исследований на переднем крае науки. Можно подумать о многих других проектах – от космической станции до подводной лодки «Морской волк» – стоимость которых много больше, чем у ССК, но внутренняя ценность намного меньше. Может быть, мы должны продолжать другие проекты из‑за желания сохранить рабочие места? Однако деньги, потраченные на ССК, обеспечивают такое же количество рабочих мест, как и любой другой проект. Может быть, не будет слишком циничным предположение, что проекты типа космической станции или подводной лодки слишком хорошо политически защищены сетью аэрокосмических и оборонных компаний, так что ССК остается самой уязвимой мишенью для чисто символического акта сокращения дефицита бюджета.

Одной из постоянных тем в дебатах по поводу ССК было противостояние так называемых большой науки и малой науки. Проект ССК вызвал противодействие со стороны ряда ученых, предпочитающих старый и более скромный стиль научного исследования – эксперименты, проводимые профессором и его студентом в комнатке университетского корпуса. Многие из тех, кто работает в современных гигантских ускорительных лабораториях, тоже предпочли бы физику такого рода, однако, в результате прошлых достижений мы столкнулись с проблемами, которые просто невозможно решить с помощью резерфордовских нитки и сургуча. Я понимаю, что многие авиаторы с грустью вспоминают те дни, когда кабины самолетов были открытыми, однако, таким способом не пересечешь Атлантику.

Противодействие проектам «большой науки» типа ССК исходит и от ученых, которые хотели бы потратить деньги на другие исследования (например, свои собственные). Но я думаю, что они сами себя обманывают. Когда конгресс урезал запрос администрации на проект ССК, освободившиеся деньги были направлены не на науку, а на проекты в гидроэнергетике[274]. Многие из этих проектов являются чистой «кормушкой», и, по сравнению с их стоимостью, средства, потраченные на ССК, являются ничтожными.

ССК также вызвал противодействие тех, кто подозревал, что решение президента Рейгана о его строительстве относилось к тому же типу, что и поддержка проекта противоракетных систем в рамках «звездных войн» и проекта космической станции – этакий бездумный энтузиазм по поводу любого нового большого инженерного проекта. С другой стороны мне кажется, что противодействие ССК у многих коренится и в столь же бездумном отвращении к любому новому большому технологическому проекту. Журналисты регулярно смешивали в одну кучу ССК вместе с космической станцией как ужасные примеры большой науки, несмотря на то, что космическая станция вообще не относится к научным проектам. Противопоставление большой науки и малой науки – хороший способ избежать необходимости обдумывать ценность отдельных проектов.

Определенная важная поддержка проекта ССК была высказана теми, кто рассматривал этот проект, как своего рода индустриальную теплицу, которая ускорит прогресс различных важнейших технологий: криогеники, создания магнитов, работы компьютеров он‑лайн и т.п. ССК представлял бы также интеллектуальный ресурс, который мог бы помочь нашей стране увеличить число исключительно одаренных специалистов. Без ССК мы потеряем поколение физиков – специалистов в области физики высоких энергий, которым придется заниматься своими исследованиями в Европе или Японии. Даже те, кто не задумываются об открытиях, сделанных этими физиками, могут понять, что такое сообщество представляет сокровищницу научных талантов, хорошо послуживших нашей стране, начиная с Манхеттенского проекта в прошлом, и заканчивая нынешними исследованиями по параллельному программированию суперкомпьютеров.

Это хорошие и важные доводы для членов конгресса в пользу поддержки проекта ССК, но они не трогают сердце физика. Наше настойчивое желание увидеть ССК завершенным связано с ощущением, что без этого нам, возможно, не удастся продолжить великое интеллектуальное приключение – поиск окончательных законов природы.

* * *
 

Поздней осенью 1991 г. я отправился в округ Эллис, чтобы посмотреть на место строительства ССК. Как и в большей части этого района Техаса, земля представляла собой слегка холмистую равнину с бесчисленным числом речушек, вдоль которых стояли трехгранные тополя. В это время года земля выглядела некрасиво: главная часть урожая была уже собрана, и поля подготовленные для озимой пшеницы выглядели как сплошная грязь. Только в отдельных местах, где сбор урожая задержался из‑за недавних дождей, поля еще белели от хлопка. В небе патрулировали орлы в надежде схватить собирающую колоски мышь. Это не ковбойская страна. В поле я увидел кучку сгрудившихся черных коров и одну белую лошадь. Стада, которые заполняют скотопригонные дворы Форт Уорта, главным образом гонят с ранчо, находящихся далеко на северо‑запад от округа Эллис. По дороге к будущему городку ССК хорошие федеральные шоссе типа ферма‑рынок постепенно переходят в немощеные окружные дороги, мало чем отличающиеся от грязных дорог, служивших местным хлопководам еще сто лет назад.

Я понял, что доехал до того участка, который был куплен штатом Техас для городка ССК, когда стал встречать забитые досками фермерские дома, ожидающие сноса или перевозки. Примерно в миле к северу можно было увидеть грандиозное новое здание корпуса разработки магнитов. Затем, за молодой дубовой рощицей я увидел высокую буровую установку, которую привезли с нефтяных месторождений на берегу Мексиканского залива, с целью пробурить пробный тоннель шириной 5 м на глубину 80 м до основания остинского мелового отложения. Я подобрал кусочек мела, который добыл бур, и подумал о Томасе Хаксли.

Несмотря на продолжающееся строительство всех зданий и бурение тоннеля, я знал, что финансирование проекта может быть прекращено. Мысленно я мог представить себе, как будут засыпать пробные тоннели и опустеет здание магнитного корпуса, и только у нескольких фермеров останутся постепенно слабеющие воспоминания об огромной научной лаборатории, которую планировали построить в округе Эллис. Возможно, что я находился под влиянием викторианского оптимизма Хаксли, но я не мог поверить, что это случится, или что поиск окончательных законов природы в наши дни будет прекращен.

Никто не может сказать, с помощью какого ускорителя мы сделаем последний шаг к окончательной теории. Я твердо знаю, что эти машины являются необходимым звеном в исторической цепочке великих научных приборов: от сегодняшних ускорителей в Брукхевене, ЦЕРНе, ДЕЗИ, Фермилабе, КЕК и СЛАК к циклотрону Лоуренса, катодной трубке Томсона и еще дальше вглубь времен к спектроскопу Фраунгофера и телескопу Галилея. Будут ли открыты окончательные законы при нашей жизни или нет, все равно замечательно, что мы продолжаем традицию подвергать природу экзамену, вновь и вновь спрашивая, почему все устроено так, как оно есть.

Послесловие ко второму изданию книги. Суперколлайдер один год спустя

 

Как раз тогда, когда второе издание этой книги ушло в печать в октябре 1993 г., палата представителей проголосовала за прекращение программы строительства Сверхпроводящего суперколлайдера. Хотя в прошлом после таких голосований программу удавалось спасти, похоже, на этот раз решение окончательное. Несомненно, что в ближайшие годы политологи и историки науки не останутся без работы, анализируя это решение, но думаю, что мои комментарии по поводу того, как и почему это случилось, не будут выглядеть слишком поспешными.

24 июня 1993 г. палата представителей повторила свое решение 1992 г. и проголосовала за изъятие финансирования ССК из законопроекта по финансированию энергетики и гидроэнергетики. Это решение не уменьшало финансирование энергетики и не предусматривало увеличение поддержки других областей науки. Просто те суммы, которые предназначались для ССК, стали доступными для поддержки других энергетических проектов. Теперь спасти лабораторию могло только положительное голосование в сенате.

И снова физики из всех уголков США забросили свои письменные столы и лаборатории и собрались летом в Вашингтоне, чтобы лоббировать проект строительства ССК. Театральной кульминацией борьбы за выживание ССК стали дебаты в сенате 29 и 30 сентября 1993 г. Наблюдая за дебатами, я испытывал сюрреалистические ощущения, слушая, как сенаторы в своих выступлениях спорят о существовании хиггсовских бозонов и цитируют в подкрепление своих слов эту книгу. Наконец, 30 сентября сенат 57 голосами против 42 решил продолжить финансирование ССК в полном объеме ($ 640 млн) в соответствии с запросом администрации. Это решение было затем поддержано согласительной комиссией палаты представителей и сената, однако 19 октября палата почти двумя третями голосов отклонила доклад согласительной комиссии и вернула закон о финансировании энергетики в комитет с инструкциями изъять из него финансирование ССК. После этого комитет на своем заседании решил остановить проект.

Почему это произошло? Очевидно, что речь не шла о каких‑то трудностях, с которыми столкнулась программа ССК. За тот год, который прошел с момента написания этой книги, под поверхностью округа Эллис в остинских меловых отложениях уже было пройдено 25 км главного туннеля. Завершено здание и частично установлено оборудование линейного ускорителя, первого из серии ускорителей, которые должны разогнать протоны перед началом их пути внутри Суперколлайдера. Завершена работа над 570‑метровым туннелем для бустера низких энергий, который должен ускорять поступившие из линейного ускорителя протоны до энергии 12 ГэВ прежде чем запустить их в бустер средних энергий. (По современным стандартам такие энергии кажутся маленькими, но когда я начинал свою работу в физике, энергия 12 ГэВ была недоступна ни одной лаборатории мира.) В Луизиане, Техасе и Вирджинии были построены заводы для массового производства магнитов, которые должны отклонять и фокусировать протоны во время их полета внутри трех бустеров и основного 83‑километрового кольца. Рядом с лабораторией разработки магнитов, которую я посетил в 1991 г., появились другие строения – лаборатория тестирования магнитов, лаборатория тестирования ускорительных систем и здание, в котором должны были помещаться огромные холодильные установки и компрессоры для жидкого гелия, необходимого для охлаждения сверхпроводящих магнитов основного кольца. Одна экспериментальная программа – плод труда более тысячи квалифицированных ученых из двадцати четырех стран – была предварительно одобрена, другая близка к завершению.

Не произошло и никаких открытий в области физики элементарных частиц, которые ослабили бы доводы в пользу строительства ССК. Мы все еще безуспешно пытаемся выйти за рамки стандартной модели. Без ССК единственной надеждой остается то, что физики Европы продвинутся вперед со своими проектами и построят аналогичный ускоритель.

Проблемы ССК частично были побочным эффектом не имеющих отношения друг к другу политических веяний. Президент Клинтон продолжал поддерживать проект ССК со стороны администрации, однако, его политическая поддержка была существенно слабее, чем у президента Буша из Техаса, или у президента Рейгана, при котором проект начался. Возможно, самое главное состояло в том, что многие члены конгресса (особенно новые) ощущали необходимость продемонстрировать свою бережливость, проголосовав против финансирования хоть чего‑нибудь . Стоимость проекта ССК составляет 0,043 % федерального бюджета, однако проект является удобным политическим символом.

В дебатах по ССК чаще всего звучала нота озабоченности приоритетами. Это действительно серьезный вопрос. Всегда очень трудно тратить деньги на другие дела, видя, как некоторые наши граждане недоедают и не имеют крыши над головой. Но некоторые члены конгресса отмечали, что те преимущества, которые в перспективе получит наше общество, поддерживая фундаментальную науку, перевешивают любой сиюминутный выигрыш, который может быть получен на те деньги, о которых идет речь. С другой стороны, многие члены конгресса, энергично ставившие под сомнение финансирование ССК, регулярно голосовали за другие, значительно менее важные проекты. Более крупные проекты, например космическая станция, пережили этот год не из‑за их внутренней ценности, а из‑за того, что так много избирателей членов конгресса экономически заинтересованы в этих программах. Возможно, что если бы Суперколлайдер стоил вдвое дороже и обеспечивал вдвое большее число рабочих мест, он бы проскочил легче.

Оппоненты ССК выдвигали обвинения в плохом управлении и безудержно растущей стоимости проекта. На самом деле никаких признаков плохого управления не было, а причиной роста расходов почти всегда были задержки финансирования со стороны правительства. Я утверждал это, давая показания в сенатском комитете по энергетике и естественным ресурсам в августе 1993 г. Но лучшим ответом на эти обвинения было сделанное в августе заявление министра энергетики О’Лири, что после израсходования 20 % от полной стоимости проект готов ровно на 20 %.

Некоторые члены конгресса доказывали, что, несмотря на научную ценность ССК, мы просто не можем позволить себе осуществить его сейчас. Но когда бы ни начал осуществляться проект таких масштабов, в течение тех лет, которые уйдут на его осуществление, обязательно найдется период, когда с экономикой будут нелады. Что же нам делать: не начинать вообще больших проектов, или прерывать их, как только в экономике намечается спад? После того, как мы списываем в корзину два миллиарда долларов и десять тысяч человеко‑лет, уже вложенных в ССК, какие ученые или какое иностранное правительство захотят в будущем участвовать в любом подобном проекте, который может быть прерван, как только с экономикой опять что‑то не так? Очевидно, что любая программа должна пересматриваться, если к этому вынуждают изменения в науке или технологии. Ведь именно физики – специалисты в области высоких энергий – взяли на себя инициативу по закрытию последнего проекта большого ускорителя ИЗАБЕЛЛА, как только это стало соответствовать изменению физических целей. Но никаких изменений в мотивах постройки ССК не произошло. Прекращая сейчас программу ССК, после всей проделанной работы только потому, что в этом году напряженный бюджет, Соединенные Штаты, похоже, навсегда прощаются с любой надеждой иметь когда‑нибудь солидную программу исследований в области физики элементарных частиц.

Возвращаясь мыслями к летней битве, я утешаю себя тем, что некоторые члены конгресса независимо от любых экономических или политических мотивов, заставивших их поддержать ССК, по‑настоящему заинтересовались той наукой, ради которой проект осуществляется. Один из них – сенатор Беннет Джонстон из Луизианы, который организовал группу поддержки проекта ССК во время дебатов в сенате. Его родной штат был экономически существенно заинтересован в строительстве магнитов для ССК, но помимо этого Джонстон оказался большим почитателем науки, что продемонстрировала его яркая речь на слушаниях в сенате. То же самое интеллектуальное восхищение наукой можно было обнаружить в заявлениях других членов конгресса: сенаторов Мойнихена из Нью‑Йорка и Керри из Небраски, конгрессменов Надлера из Манхэттена и Гепхардта из Миссури, а также научного консультанта президента Джека Гиббонса. В мае 1993 г. я был членом группы физиков, которая встречалась с вновь избранными членами конгресса. После того, как другие поговорили о ценном технологическом опыте, который будет получен при строительстве ССК, я заметил, что хотя не очень разбираюсь в политике, не следует забывать, что есть немало избирателей, искренне интересующихся фундаментальными научными проблемами, а не только любыми технологическими приложениями. Конгрессмен из Калифорнии заметил после этого, что он согласен со мной только в одном пункте – в том, что я не разбираюсь в политике. Чуть позже в комнату вошел сенатор из Мэриленда, и, немного послушав дискуссию о побочных технологических результатах, заметил, что не следует забывать, что многие избиратели, кроме всего прочего, интересуются фундаментальными проблемами науки. Я ушел счастливым.

Дебаты о Суперколлайдере приводят и к более серьезным размышлениям. В течение столетий взаимоотношения науки и общества управлялись молчаливым соглашением. Ученые обычно хотели делать открытия, которые были бы универсальными, красивыми или фундаментальными, независимо от того, можно ли было предвидеть от них какой‑либо конкретный выигрыш для общества. Некоторые люди, сами не являющиеся учеными, считают такую чистую науку очень увлекательной, но общество, в лице конгрессмена из Калифорнии, обычно желает поддерживать исследования в области чистой науки, главным образом, в ожидании новых приложений. Обычно такие ожидания оправдывались. Это не означает, конечно, что любая  работа в науке обязательно приведет к чему‑нибудь полезному. Речь идет о том, что, раздвигая границы знания, мы надеемся обнаружить действительно новые явления, которые могут оказаться полезными, как это случилось в свое время с радиоволнами, электронами и радиоактивностью. При попытках совершить эти открытия мы вынуждены проявлять технологическую и интеллектуальную виртуозность, приводящую к новым приложениям.

Но сейчас этой сделке, похоже, приходит конец. Не только некоторые члены конгресса потеряли доверие к чистой науке. Борьба за финансирование привела некоторых ученых, работающих в более прикладных областях, к отказу в поддержке тех из нас, кто занимается поиском законов природы. Те проблемы, с которыми столкнулся проект ССК в конгрессе, есть лишь один симптом этого разочарования в чистой науке. Другим является недавняя попытка сената потребовать, чтобы национальный научный фонд выделил 60 % своих расходов на социальные нужды. Я не утверждаю, что деньги будут потрачены плохо, но ужасает то, что некоторые сенаторы выбрали исследования в чистой науке как то место, откуда эти деньги можно забрать. Споры об ССК подняли вопросы, значение которых далеко выходит за рамки этого проекта, и которые останутся с нами в грядущие десятилетия.

Остин, Техас

Октябрь 1993 г.



[211] Перевод Анны Радловой.

[212] Предложено независимо Йоширо Намбу, Хольгером Нильсеном и Леонардом Сасскиндом.

[213] Это замечание принадлежит Эдварду Виттену.

[214] Некоторые из этих трудностей можно преодолеть только путем наложения симметрии, которую позднее назвали суперсимметрией, так что такие теории часто называют теориями суперструн .

[215] Хотя такая нежелательная частица возникает в теориях струн как мода колебаний замкнутой  струны, не удается избежать появления этой частицы, рассматривая только открытые струны, так как при соударениях открытых струн обязательно образуются замкнутые струны.

[216] К этому выводу пришли независимо Ричард Фейнман и я.

[217] Это было впервые предложено в 1974 г. Дж. Шерком и Дж. Шварцем и независимо Т. Йонейя.

[218] Цит. по Horgan J.  // Scientific American, November 1991, p. 48.

 

[219] Действительно, теорию струн можно рассматривать как теорию частиц, отвечающих различным модам колебаний струны, но из‑за бесконечно большого числа сортов частиц в любой струнной теории она отличается от обычных квантовых теорий поля. Например, в квантовой теории поля испускание и обратное поглощение одного сорта частиц (скажем, фотона) приводит к бесконечному сдвигу энергии – в правильно сформулированной теории струн эта бесконечность сокращается благодаря эффектам испускания и поглощения частиц, принадлежащих бесконечному числу других типов.

[220] Эта несогласованность в теории струн была чуть ранее обнаружена Виттеном и Луисом Альварес‑Гауме.

[221] Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен.

[222] Дэвид Гросс, Джеффри Харви, Эмиль Мартинес и Райан Ром.

[223] Конформная симметрия основана на факте, что при движении множества струн в пространстве, они заметают в пространстве‑времени двумерную поверхность. Каждая точка на поверхности имеет метку, задающую момент времени, и другую метку, определяющую координату вдоль одной из струн. Как и для любой другой поверхности, геометрия этой заметенной струнами двумерной поверхности описывается выражением для расстояния между любой парой очень близких точек, записанного через координатные метки. Принцип конформной инвариантности утверждает, что уравнения, управляющие движением струн, сохраняют свою форму, если мы изменим способ измерения расстояний, умножив все расстояния между какой‑то точкой и любой соседней точкой на величину, произвольным образом зависящую от положения первой точки. Конформная симметрия необходима потому, что в противном случае колебания струны в направлении оси времени приведут (согласно одной из формулировок теории) либо к отрицательным вероятностям, либо к нестабильности вакуума. При наличии конформной симметрии эти времениподобные колебания могут быть устранены из теории преобразованием симметрии, и поэтому безвредны.

[224] Термин «антропный принцип» ввел Б. Картер. См., например, Confrontation of Cosmological Theories with Observation / Ed. M.S. Longair (Dordrecht: Reidel, 1974); Carter B.  The Anthropic Principle and Its Implications for Biological Evolution // The Constants of Physics / Ed. W. McCrea and M.J. Rees (London: Royal Society, 1983), p. 137; Barrow J.D.  and Tipler F.J.  The Anthropic Cosmological Principle (Oxford: Clarendon Press, 1986); Gribbin J.  and Rees M.  Cosmic Coincidences: Dark Matter, Mankind, and Anthropic Cosmology (New York: Bantam Books, 1989), chap. 10; Leslie J.  Universes (London: Routledge, 1989).

[225] Салпетер в своей статье 1952 года также говорит о том, что И. Опик выдвигал эту идею в 1951 году.

[226] С Хойлом работали Д.Н.Ф. Данбар, В.А. Венцель, В. Уолинг.

[227] На самом деле, уровни энергии кислорода также должны обладать специальными свойствами, чтобы не допустить превращения всего углерода в кислород.

[228] В группу входили М. Ливио, Д. Холловелл, А. Вейс и Дж.В. Труран.

[229] Конкретно, на 60 кэВ. Это, конечно, очень маленькая энергия по сравнению с разностью в 7,644 МэВ между энергиями этого нестабильного состояния и стабильного наинизшего состояния углерода. Но не требуется никакой тонкой настройки, чтобы сделать энергию этого нестабильного состояния ядра углерода равной с такой же точностью энергии ядра бериллия‑8 и ядра гелия, поскольку в хорошем приближении соответствующие состояния ядер углерода и бериллия являются просто слабо связанными ядерными молекулами, состоящими из трех или двух ядер гелия. (Я благодарен моему коллеге Вадиму Каплуновскому из Техасского университета за это замечание.)

[230] Эта версия антропного принципа иногда называется слабым антропным принципом.

[231] Физик, эмигрант из бывшего СССР, рассказывал мне, что несколько лет тому назад в Москве ходила шутка по поводу того, что антропный принцип объясняет, почему жизнь так плоха. Существует значительно больше возможностей того, чтобы жизнь была плохой, а не счастливой. Антропный принцип требует только, чтобы законы природы допускали существование разумных существ, но не утверждает, что эти существа будут радоваться жизни.

[232] Hoyle F.  Galaxies, Nuclei, and Quasars (London: Heinemann, 1965).

 

[233] Строго говоря, эти «кротовые норы» возникают математически в том подходе к квантовой гравитации, которая известна как евклидово интегрирование по траекториям. Неясно, какое отношение все это может иметь к реальным физическим процессам.

[234] Коулмен продолжал настаивать (как Баум и Хокинг ранее), что вероятности этих констант имеют бесконечно высокие пики при определенных значениях, так что с подавляющей вероятностью константы примут эти конкретные значения. Однако такой вывод базируется на математической формулировке (в виде евклидового интеграла по траекториям) квантовой космологии, согласованность которой находится под вопросом. Трудно быть полностью уверенным во всем этом, поскольку мы имеем дело с гравитацией в квантовой области, т.е. там, где наши уравнения уже неадекватны.

[235] Чтобы вновь показать, насколько бывает сложной история науки, замечу, что сразу же после работы Эйнштейна 1917 г. по космологии его друг Биллем де Ситтер указал на то, что уравнения гравитационного поля Эйнштейна, модифицированные путем включения космологической постоянной, имеют другой класс решений, также по внешнему виду статических, но не содержащих (или почти не содержащих) материи. Это разочаровало Эйнштейна, так как в его решении космологическая постоянная связана со средней космической плотностью материи, в согласии с теми идеями, которые Эйнштейн почерпнул у Маха. Кроме того, решение Эйнштейна (с материей) на самом деле нестабильно: любое малое возмущение переведет его в конце концов в решение де Ситтера. Чтобы еще больше запутать дело, отмечу, что модель де Ситтера только приближенно статична. Хотя пространственно‑временная геометрия в использованной де Ситтером координатной системе не изменяется со временем, любые малые пробные частицы, помещенные в его вселенную, будут разлетаться друг от друга. На самом деле, когда в начале 1920 г. в Англии стали известны измерения Слайфера, они были сначала интерпретированы Эддингтоном в рамках решения де Ситтера уравнений Эйнштейна при наличии космологической постоянной, которое также является статическим, а не с помощью первоначальной теории Эйнштейна, приводящей к нестатическому решению.

[236] Abbott L.  // Scientific American 258, no. 5 (1985): 106.

 

[237] Мы не можем даже надеяться, что найдется механизм, с помощью которого вакуумное состояние потеряет энергию, перейдя в состояние с более низкой энергией и, следовательно, меньшей космологической постоянной, и в конце концов спустится в состояние с нулевой полной космологической постоянной, так как некоторые из этих возможных вакуумных состояний в теориях струн уже обладают большой отрицательной  полной космологической постоянной.

[238] Если обнаружится меньшая или большая плотность, то сразу возникнет вопрос, почему расширение продолжалось миллиарды лет и все еще замедляется.

[239] Popper К.R.  Objective Knowledge: An Evolutionary Approach (Oxford: Clarendon Press, 1972), p. 195. (Рус. пер. Поппер К.Р.  Объективное знание. Эволюционный подход. М.: УРСС, 2002.)

[240] Redhead М.  Explanation. August 1989.

[241] Интересное обсуждение этой возможности дается в книге Davies P.  What Are the Laws of Nature // The Reality Club #2 / Ed. John Brockman (New York: Lynx Communications, 1988).

 

[242] Wheeler J.A.  Beyond the Black Hole // Some Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein / Ed. H. Woolf (Reading, Mass.: Addison‑Wesley, 1980), p. 341.

 

[243] Nielsen H.B.  Field Theories Without Fundamental Gauge Symmetries // The Constants of Physics / Ed. W. McCrea and M.J. Rees (London: Royal Society, 1983), p. 51; перепечатано в Philosophical Transactions of the Royal Society of London A310 (1983): 261.

 

[244] Wigner E.P.  The Limits of Science // Proceedings of the American Philosophical Society 94 (1950): 422. (На русском языке опубликована в книге: Вигнер Э.П.  Инвариантность и законы сохранения. Этюды о симметрии. М.: УРСС, 2002.)

[245] Redhead М.  Explanation.

[246] Nozick R.  Philosophical Explanation (Cambridge, Mass.: Harvard University Press, 1981), chap. 2.

 

[247] Psalms 19: 1 (версия короля Джеймса)[247][247] Псалтырь. Псалом 18. – Прим. ред.

.

[248] Hawking S.  A Brief History of Time (London: Bantam Books, 1988). (Рус. пер. Хокинг С.  Краткая история времени. М.: Амфора, 2003); Ткefil J.  Reading the Mind of God (New York: Scribner, 1989) и Davies P.  The Mind of God: The Scientific Basis for a Rational World (New York: Simon & Schuster, 1992).

 

[249] Misner С.W.  // Cosmology, History, and Theology / Ed. W. Yourgrau and A.D. Breck (New York: Plenum Press, 1977), p. 97.

 

[250] Цит. пo Holton G.  // The Advancement of Science, and Its Burdens (Cambridge: Cambridge University Press, 1986), p. 91.

 

[251] Einstein A.  Festschrift für Aunel Stadola (Zurich: Orell F’ussli Verlag, 1929), p. 126.

 

[252] П. Тиллих, выступление в университете Северной Каролины 1960, цит. по De Witt В.  Decoherence Without Complexity and Without an Arrow of Time (University of Texas, Center of Relativity: preprint, 1992).

 

[253] Это взято из неопубликованной стенограммы слушаний.

[254] Всем должно быть ясно, что обсуждая эти вещи, я говорю только о самом себе, и что в этой главе я игнорирую любые требования компетентности.

[255] Взято из интервью в «Нью‑Йорк Таймс», апрель 25, 1929. Я благодарен А. Пайсу за эту цитату.

[256] Работы Галилея показали, что мы на Земле не должны чувствовать движения Земли вокруг Солнца. Кроме того, его открытие лун Юпитера стало демонстрацией Солнечной системы в миниатюре. Завершающее доказательство связано с открытием фаз Венеры, что никак не согласовывалось с предположением, что Венера и Солнце вращаются вокруг Земли.

[257] Обращаясь вокруг Земли вместо того, чтобы улететь по прямой в открытый космос, Луна за каждую секунду приобретает компоненту скорости, равную 0,1 см/с по направлению к Земле. Теория Ньютона объяснила, что это в 3 600 раз меньше, чем ускорение падающего яблока в саду Кембриджа, так как Луна в шестьдесят раз дальше от центра Земли, чем Кембридж, а ускорение за счет силы тяготения уменьшается обратно пропорционально квадрату расстояния.

[258] Perutz М.Е.  Erwin Schrödinger’s What Is Life? and Molecular Biology // Schrödinger: Centenary Celebration of a Polymath / Ed. C.W. Kilmeister (Cambridge: Cambridge University Press, 1987), p. 234.

 

[259] Я впервые услышал о профессоре Джонсоне, когда мой друг показал мне его статью «Эволюция как догма». См. A Monthly Journal of Religion and Public Life, October 1990, pp. 15–22.

 

[260] Gould S.  Impeaching a SelfAppointed Judge // Scientific American, July 1992, p. 118.

 

[261] Polkinghorne J.  Reason and Reality: The Relation Between Science and Theology (Philadelphia: Trinity Press International, 1991).

 

[262] Более подробно см. Levinson S.  Religious Language and the Public Square // Harvard Law Review 105 (1992): 2061; Midgley M.  Science as Salvation: A Modern Myth and Its Meaning (London: Routledge, 1992).

 

[263] Lightman A.  and Brawer R.  Origins: The Lives and Worlds of Modern Cosmologists (Cambridge, Mass.: Harvard University Press, 1990).

 

[264] Из стихотворения Мэтью Арнольда «Dover beach» («Дуврский берег»).

[265] Sontag S.  Piety Without Content // Against Interpretation and Other Essays (New York: Dell, 1961). (Рус. пер. Зонтаг С.  Против интерпретации. Сб. статей. М., 1988.)

[266] Trevor‑Roper H.R.  The European Witch‑Craze of the Sixteenth and Seventeenth Centuries, and Other Essays (New York: Harper & Row, 1969).

 

[267] Popper K.R.  The Open Society and Its Enemies (Princeton, N.J.: Princeton University Press, 1966), p. 244. (Рус. пер. Поппер K.P.  Открытое общество и его враги. М., 1992.)

[268] См. его Трактат о природе человека (1739).

[269] Bede . A History of the English Church and People / Trans. Leo Sherley‑Price and rev. R.E. Latham (New York: Dorset Press, 1985), p. 127.

 

[270] Цит. по работе Science 221 (1983): 1040.

[271] Туннель установки ИЗАБЕЛЛА используется сейчас для релятивистского ускорителя тяжелых ионов, который будет использоваться для изучения столкновений тяжелых ионов с целью понять свойства ядерной материи, а не фундаментальные принципы физики элементарных частиц. Ожидается, что этот ускоритель будет готов в 1997 г.

[272] Это замечание применимо к неоднородностям галактического размера, но не значительно большим неоднородностям, следующим из измерений СОВЕ. Они настолько велики, что даже световая волна не успела бы их пересечь за первые триста тысяч лет после начала современного расширения Вселенной, и поэтому (независимо от того, состоят они их темной материи или нет) они не могли испытать существенного роста за это время.

[273] После того, как местом строительства было выбран округ Эллис, в спорах возник новый элемент – зазвучали обвинения со стороны разочарованных политиков из таких штатов, как Аризона, Колорадо и Иллинойс, что Техас выиграл соревнование в выборе места строительства в результате нечестного политического давления. Широко обсуждался тот факт, что выбор министерством энергетики штата Техас в качестве места строительства ССК был объявлен буквально через два дня после избрания президентом США губернатора Техаса Джорджа Буша. После того, как решение о месте строительства ССК было обнародовано, министр энергетики Херрингтон заявил, что специальная комиссия министерства, которая установила рейтинг семи «самых подходящих» мест, была изолирована от политического давления, что он сам не получал выводов комиссии до дня выборов президента, что специальная комиссия сочла место в Техасе безусловно наилучшим, и что только после этого он получил одобрение окончательного решения от президента Рейгана и вновь избранного президента Буша. Я вполне могу поверить, что процесс отбора мог бы быть ускорен так, чтобы объявить решение перед выборами, но тогда это, несомненно, вызвало бы обвинения в том, что момент объявления был выбран специально, чтобы повлиять на важный голос штата Техас. С другой стороны, даже если избрание Джорджа Буша никак не повлияло на выбор места, министерство энергетики, безусловно, было хорошо осведомлено о влиятельности членов Конгресса от Техаса и их полном одобрении ССК, так что можно было надеяться, что решение о месте строительства в Техасе улучшит шансы проекта ССК на получение финансирования от Конгресса. Если так, то это вряд ли следует рассматривать как скандал или как первый и последний случай, когда правительственное агентство занимается подобными расчетами. Во всяком случае, я могу засвидетельствовать, что подобные расчеты не играли никакой роли в выборе семи самых предпочтительных мест комитетом национальных академий, в который я входил. Наш комитет с самого начала рассматривал место в Техасе в качестве одного из главных претендентов. Частично это было связано с исключительно удачными геологическими условиями. Другим важным фактором было наличие крикливой оппозиции строительству ССК в нескольких других, входивших в список наилучших местах, в том числе в лаборатории им. Ферми в штате Иллинойс. В округе Эллис практически каждый житель был рад приветствовать строительство ССК.

[274] См., например, R. Darman, цит. по: Aldhous P.  Space Station Back on Track // Nature 351 (1991): 507.

 
 
Ко входу в Библиотеку Якова Кротова